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We studied the dynamics of fingertip displacement series in human pole balancing using recurrence quan-
tification analysis (RQA). The purpose of this research was to determine how the dynamical structure of
fingertip fluctuations evolved with learning. Learning was accompanied by increased stability of move-
ment trajectories in spite of a reduced tendency for movement trajectories to recur. Task manipulations,
on the other hand, resulted in more intermittent fingertip dynamics, which suggests that individuals
were more tolerant of random fingertip displacements when the task was performed while sitting rela-
tive to standing. Such a strategy would minimize the computational burden associated with maintaining
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Complex perceptual-motor tasks such as pole balancing have
generated empirical and theoretical interest because they are rep-
resentative of how the CNS interacts with and controls unstable
objects [4-6,9,16]. Two opinions have emerged regarding control
for the pole balancing task.

Computational approaches have been used to argue the CNS
employs forward models to ensure the pole remains upright.
The premise is that predictive control can help circumvent sen-
sorimotor processing delays to produce low latency movements
required for controlling the pole’s angle [ 16]. Such predictive mech-
anisms have been described in the wake of sensory uncertainty
using internal forward models [30]. Alternatively, the stability of
pole dynamics may emerge as a consequence of the stochastic
properties of motor control [4]. In support of this argument, behav-
ioral data have shown that 98% of fingertip movements are on
timescales shorter than sensory processing delays. Numerical anal-
yses subsequently demonstrated that balance can be facilitated in
time-delayed stochastic systems provided the dynamics are tuned
such that stochastic displacements force the fingertip trajectory
back and forth across stability boundaries [5,6]. Accordingly, inter-
mittent control might be favorable for stochastic, time-delayed
systems since the computational burden is minimized [17].

In support of the latter argument, we previously quantified
decay exponents («) and truncation for the distribution of fin-
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gertip speed changes in pole balancing [8]. Successive differences
in fingertip speed were shown to be Lévy distributed. Learning,
which was quantified behaviorally as an increase in balancing time,
resulted in reduced decay for the probability of large speed steps
[8]. The observed decrease in the a-parameter of the Lévy distribu-
tionreflects tolerance to fluctuations in the position of the pole over
the course of learning. In other words, following extensive prac-
tice, large excursions of the fingertip are probabilistically rare, but
enacted more frequently than early in learning. These large ampli-
tude corrections are initiated only when stability is threatened, as
opposed to early in the course of learning, when large fingertip
excursions are performed more continuously. These findings effec-
tively demonstrated that learning may be characterized by changes
in the statistical properties of movement kinematics.

The first goal of the present study was to provide a detailed
profile of the Lévy-distributed dynamics of pole-balancing finger-
tip trajectories over the course of learning. We applied recurrence
quantification analysis to time series of fingertip trajectories
recorded during pole-balancing (RQA) [28,29] to substantiate the
link between the gross statistical properties of movements and
the time series dynamics of individual performances. This study
was motivated by previous work [8], which found that individu-
als were more tolerant of large amplitude fingertip displacements
with pole balancing experience. This tolerance reflects an increased
robustness to perturbations, a form of dynamical stability that is
captured by the RQA variable L. (this and the other RQA vari-
ables mentioned here are described in detail below). Therefore, we
predicted that Lax would increase over the course of learning and
would reflect sensorimotor skill acquisition. The increase in the
relative frequency of large fingertip excursions that accompanies
learning might also be reflected in the magnitude of the variable
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TREND, which measures nonstationarity. In addition, RQA provides
a method for quantifying change in the degree of relative deter-
minism versus stochasticity (¥DET) embedded in pole-balancing
fingertip dynamics, a characteristic of the dynamics that might
be expected to change over the course of learning [cf. 18,1,2,23].
Finally, RQA provides a set of measures capable of indexing inter-
mittency in the control enacted in pole-balancing, including %LAM,
Vmax, and TTIME.

The second goal of this study was to determine the effects of
available biomechanical degrees of freedom (df) for balancing. Pre-
vious findings demonstrated that learning is accompanied by a
progressive recruitment of mechanical degrees of freedom that par-
allels the development of motor expertise [25-27]. These findings
follow from Bernstein’s stages of motor learning, whereby early
learning is most aptly characterized by constraining degrees of
freedom and eliminating motor redundancy. Effectively, constrain-
ing degrees of freedom translates to more readily manageable,
rigid patterns of movement. Practice tends to release restrictions,
as degrees of freedom become organized in a coordinative unit
whereby reactive forces of the task dynamics are exploited [3].

Quantifying time series dynamics: RQA is a nonlinear time series
analysis that quantifies several dimensions of the time evolution of
a signal. Importantly, RQA makes no assumptions about the statis-
tical distribution or stationarity of time series, and furthermore, is
suited for the analysis of brief time series. For detailed reviews of
RQA including practical tutorials see [13,20,28].

The first step in RQA is to determine how frequently the move-
ment trajectory revisits locations in reconstructed phase space (i.e.,
how frequently states recur). This is captured by the RQA variable
%REC. Reductions in %REC reflect a decrease in the regularity of the
system behavior—the system less frequently revisits states that it
previously visited. The patterns of recurrence can then be used to
quantify the dynamical structure of the time series as characterized
by the following RQA variables.

%DET is the percentage of recurrent points that form diagonal
lines in the recurrence plot of minimal length ;. The rationale for
%DET is that un- or weakly correlated stochastic processes (prob-
abilistically) elicit many isolated recurrent points. Deterministic
dynamics, however, manifest as longer diagonals and fewer iso-
lated recurrent points [13]. As such, %DET reflects the deterministic
(predictable) structure of the dynamics.

The maximum length of diagonal lines in the recurrence plot,
excluding the main diagonal (where i=j and the distance between
points is by definition zero) defines the Lyax parameter. Lyax is
inversely proportional to divergence and thereby quantifies the
dynamic’s robustness to perturbation (or to a change in initial
conditions), since it approximates the lowest limit of the sum of
positive Lyapunov exponents [10,24,31].

Entropy (ENT) is the Shannon entropy for the frequency dis-
tribution of diagonal line lengths. The ENT parameter quantifies
complexity in the deterministic structure embedded in the signal
[29]. Greater values of ENT indicate increased complexity (i.e., for
uncorrelated noise, ENT is small, indicating low complexity).

Laminarity (%LAM) is analogous to %DET but measures the
percentage of recurrent points forming vertical (with minimum
length v, ) rather than diagonal lines. %4LAM quantifies the local
time relationship between close trajectory segments [14,15]. 5LAM
demarcates time intervals during which the system’s state is rela-
tively constant compared to intervals of sudden bursts of activity,
a hallmark of intermittent systems [13,14]. Recently, Kuznetsov
and Riley (submitted) used $LAM to distinguish between force pro-
duction tasks where feedback modulated the intermittency of the
enacted control.

Directly related to the %LAM parameter is the trapping time
(TTIME), which quantifies the average length of vertical structures
in the recurrence matrix. TTIME estimates the mean time (samples)

the system abides at a specific state; the average time for which
the state is trapped. The final measure which considers vertical line
structures from the recurrence matrix is the maximal length of ver-
tical lines, vmax, which is analogous to the Ly, measure for diagonal
line structures.

In this study we present a reanalysis of data collected for a pole-
balancing learning study [8]. Previously the fingertip trajectory
data were examined to determine how the statistical properties of
pole-balancing kinematics were influenced by learning [8]. Partici-
pants learned to pole balance over four experimental sessions that
spanned two weeks. Balancing performance improved progres-
sively over the course of learning, as evidenced by an increase in the
average time spent balancing in each trial. Task constraints, which
were imposed by constraining available biomechanical degrees
of freedom for balancing, also influenced performance. In this
regard, balancing was facilitated by the availability of biomechan-
ical degrees of freedom, i.e., in the standing relative to sitting
condition. Sensorimotor skill acquisition led to changes in the decay
parameter for the probability of fingertip speed step sizes, which
translated to tolerance for large amplitude, noisy pole displace-
ments. In this experiment we pursue a different aim, employing
RQA to determine whether the evolution of fingertip displacement
dynamics was moderated by learning or task-level constraints
imposed for balancing (reduced biomechanical df for balancing).

Six healthy subjects (2 males, aged 26-28 years; 4 females, aged
23-27 years) participated in this research. Subjects were mem-
bers of the Sensorimotor Neuroscience Laboratory. Participants had
normal or corrected to normal vision and were free of neuromus-
cular and musculoskeletal disorders at the time of collection. All
procedures were performed in accordance with the Declaration of
Helsinki. The protocol was approved by the McMaster University
institutional review board and subjects provided written informed
consent prior to experimentation.

Motion capture was performed with 8 VICON MX-40+ infrared
cameras sampled at 500 Hz (Denver, CO, USA). Three dimensional
pole kinematics were recorded using two spherical reflective mark-
ers (14 mm diameter) affixed to the top and bottom of the pole with
double-sided adhesive. Data acquisition was performed with the
Workstation software (v4.6). Marker trajectories were processed
offline and exported for subsequent analysis.

Subjects balanced a wooden dowel (length 62 cm, diameter
0.635 cm, mass 50¢g) in two experimental conditions: sitting and
standing. Sitting trials were performed with subjects seated com-
fortably in a chair at their preferred seat height. Subjects were
instructed to maintain contact with the backrest. In the standing
condition, subjects balanced with feet approximately shoulder-
width apart and were free to move the upper body while keeping
the feet stationary. When foot movement occurred, the trial was
excluded from subsequent analysis.

This study employed a learning protocol. Subjects learned to
pole balance over a two-week period. Data collection occurred on
the first day, followed by collection every fourth day. At each ses-
sion, subjects performed 10 trials for each experimental condition.
The presentation of conditions was blocked and counterbalanced
across subjects. Subjects practiced pole balancing for 30 min per
day (15min per condition) between experimental sessions, dis-
tributed according to their preference. We did not enforce a
predetermined learning regimen (i.e., massed vs. distributed prac-
tice).

RQA was implemented with the RQA software suite (v13.1;
Webber 2009). We determined the embedding delay (t) and
dimension (D.) from a representative sample of trials using aver-
age mutual information (AMI) and false nearest neighbors (FNN)
analysis, respectively. The embedding delay (t) was the first min-
imum of AMI for the finger displacement series. The embedding
dimension D, was the dimension at which FNN were minimum (1%
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Fig. 1. %REC was moderated by learning and a condition effect. (a) ¥REC was dependent on a learning effect, decreasing progressively from the first through third experimental
session. (b) ¥REC was dependent on a condition effect, with %REC greater in the sitting relative to standing condition, which reveals greater tendency for the dynamic to visit

local neighborhoods in phase space in this condition.

considered acceptable), which signifies the attractor has been suf-
ficiently unfolded. The embedding delay parameters ranged from
34 to 108 samples, whereas the embedding dimensions ranged
from 3 to 7. We used the median embedding delay t =62 samples
and dimension D=5 for RQA. The line parameter, which spec-
ifies the number of successive points defining a line segment,
was set to 5. We chose the more conservative line parameter to
avoid saturation of %DET and a subsequent ceiling effect. The dis-
tance matrix was computed from the Euclidean distance between
points, with the threshold for neighborliness, the radius ¢, set to
10% of the mean distance between points. RQA was performed
for fingertip series in both the x- and y-axes. Results for sagittal
plane (y-axis) fingertip trajectories are reported here. Analysis of
the coronal plane (x-axis) displacements yielded nearly identical
results.

Dependent variables were contrasted with session (3) and con-
dition (2) as independent factors using separate 3 x 2 ANOVAs with
repeated-measures. Post hoc analyses were performed with Bon-
feronni corrections. The significance level for statistical contrasts
was .05. Only significant effects are reported.

%REC (Fig. 1) was dependent on learning, F(2,10)=12.751,
p<.01, with %REC significantly greater in Session 1 (M=1.327,
SE=0.281) relative to Session 3 (M=0.575, SE=0.191), p<.05,
whereas %REC was not different between Session 1 and 2 (M =1.244,
SE=0.241). %REC was also larger in the second (M=0.896,
SE=0.189) relative to third session, p=.008.

Lmax (Fig. 2) was influenced by learning, F(2,10)=9.100, p<.01.
Lmax was significantly larger at the outset (M = 2356.60, SE = 434.76)
relative to both the first (M=1619.36, SE=376.05) and second
sessions (M =1354.86, SE=267.73). Lmax was also dependent on
condition, F(1,5)=4.980, p <.05, with greater maximum diagonal
line length in the standing (M=2270.85, SE=420.19) relative to
sitting (M =1403.02, SE=277.72) condition. There was also a signif-
icant interaction, however, F(2,10)=5.386, p <.05. The interaction
showed that Lhax was similar between conditions at the outset,
but increased disproportionately in the standing relative to sitting
condition thereafter. Following learning, the dynamical stability of
fingertip movements was greater when the task was performed
while standing.

ENT was dependent on the condition for balancing,
F(1,5)=27.968, p<.01. ENT was significantly greater in the
standing (M =4.71, SE=0.12) relative to sitting (M=4.18, SE=0.21)
condition.

Fingertip displacement series were nonstationary in the pole
balancing task, TREND was dependent on condition, F(1,5)=7.59,
p<.05. Nonstationarity was greater in the sitting (M=-18.75,
SE=38.08) relative to standing condition (M =—8.13, SE=4.43).

%LAM was influenced by condition, F(1,5)=20.32, p<.001, with
significantly greater %LAM in the standing (M=55.51, SE=4.16)

relative to sitting (M=35.70, SE=4.16) condition. vmax was also
dependent on condition, F(1,5)=106.57, p <.001, with significantly
greater vertical line length in the standing (M =21.94, SE=1.88) rel-
ative to sitting condition (M =14.65, SE=2.26), p<.01. In addition,
TTIME was dependent on condition, F(1,5)=32.60, p<.01. TTIME
was significantly greater in the standing (M=7.35, SE=0.37) rel-
ative to sitting condition (M=6.05, SE=0.41). Taken together, the
latter three results indicate more intermittent control when the
task is performed while standing.

The primary purpose of this research was to determine how fin-
gertip dynamics were influenced by learning in the pole-balancing
task. This study follows from previous work carried out in our lab-
oratory [8]. RQA revealed a number of changes in the dynamics of
fingertip displacements that occurred over the course of learning.
RQA also revealed a number of effects related to the availability of
biomechanical degrees of freedom for task performance.

%REC is a measure of temporal correlation. It reflects the
tendency for points that over time return to the same local
neighborhood of the reconstructed phase space. REC decreased
progressively with learning, suggesting the temporal correla-
tion in fingertip displacement series decreased with experience.
Therefore, as participants became more experienced in balancing,
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Fig. 2. Lynax was influenced idiosyncratically by learning and condition. At the out-
set, Lmax Was similar, which suggests that prior to any sensorimotor skill acquisition
the dynamic was equistable between conditions. However, with the development
of expertise, Lnax increased disproportionately in the standing relative to sitting
condition. The stability of the dynamic increased nearly linearly with experience,
culminating in relatively more stable fingertip dynamics in the standing condition.
Lmax and therefore dynamical stability of fingertip trajectories was greater in the
standing relative to sitting condition during the second and third sessions. In both
conditions, dynamical stability increased from second to third sessions. *p <.05;
**p<.01.
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trajectories in the reconstructed phase space were less likely to
repeat.

Lmax is the maximum diagonal line length in the recurrence
matrix (aside from the main diagonal, when i=j) and is propor-
tional to the maximum positive Lyapunov exponent [24]. Lpax
thereby quantifies the stability of the underlying dynamics. In
this experiment, Lmax increased with learning, reflecting senso-
rimotor skill acquisition, but the interaction was such that the
learning effect for Lax varied idiosyncratically across conditions.
The relative stability of pole-balancing fingertip dynamics was
equal prior to experience, however, with learning Ly, increased
disproportionately for the standing balance condition. Effectively,
the difference in stability suggests the availability of biomechani-
cal degrees of freedom affected the pole balancing dynamics. This
result supplements previous findings whereby performance in the
pole balancing task saw an overall improvement with learning but
was greater in the standing condition.

Therefore, over the course of learning, fingertip displacement
trajectories were less likely to repeat, overall, but repeating values
in the trajectories tended to occur as longer strings of recur-
rent points. Several previous studies have employed dynamical
measures to characterize motor skill acquisition. Those studies
have revealed findings such as reduced movement system vari-
ability over the course of learning [7,11,18,19]. Mitra et al. [18]
also demonstrated that continued skill refinement led to further
decreases in dynamical noise, which endured after system dimen-
sionality had stabilized. Broadly speaking, motor learning appears
to involve the establishment and refinement of stable dynami-
cal structure underlying movement trajectories. Moreover, that
the stability of fingertip dynamics followed different learning tra-
jectories suggests the availability of biomechanical degrees of
freedom influenced the dynamical stability of fingertip displace-
ments during pole balancing. These results suggest control proffers
from motor abundancy that accompanies biomechanical degrees of
freedom[3,12,21,22]. That s, the flexibility of abundant motor solu-
tions manifests as an increase in the stability of fingertip dynamics.

ENT, a measure of the complexity of the deterministic structure
in the time series, was also greater in the standing relative to sitting
condition, while TREND magnitude was greater in the sitting rela-
tive to standing condition. The addition of biomechanical degrees of
freedom for control led to more stationary yet complex dynamics of
fingertip displacement. These results complement previous work
[8], which considered how the macroscopic variability of finger-
tip fluctuations in pole balancing was influenced by biomechanical
degrees of freedom available for balancing. Taking the results of
these studies together, the increased variability in fingertip fluc-
tuation magnitudes and L ax in the standing condition translate to
increased probability for varied segment lengths, which is reflected
as increased complexity by the ENT variable.

Our results demonstrate that %LAM, vmax, and TTIME, which
index intermittency in the dynamics, were all larger in the standing
relative to sitting condition. Collectively, these results suggest that
the underlying control strategy in the standing condition is more
intermittent, obviated by the relative amount of laminar phases in
the observed dynamics. In other words, the system’s propensity for
intermittency was observed in relatively longer phases whereby
the fingertip position was approximately constant. These results
are consistent with a control mechanism that capitalizes on the
passive dynamics of the pole, and subsequently corrects for pole
excursions only when these displacements threaten stability.

Intermittent systems exhibit two distinct phenomenological
states. In the “off” state, the dynamics are approximately constant
over various time intervals. In the pole balancing task, the “off” state
is reflected by time periods where the fingertip position remains
approximately constant. Conversely, the “on” state is character-
ized by intermittent bursting of the dynamical variable, which in

the pole balancing task is manifest as rapid, large amplitude cor-
rective finger displacements. Intermittency requires the dynamics
be invariant within specific bounds, so that in the pole balancing
task, corrective movements are enacted only when pole excursions
threaten stability.

In summary, condition contrasts revealed drastic differences
with regards to how task manipulations resulted in different
dynamics. The %$LAM, vmax and TTIME variables from RQA revealed
that fingertip fluctuations were more intermittent in the standing
condition. Intermittency in the dynamics reflects greater relative
contribution from small amplitude, random fluctuations on fast
timescales (passive vs. active dynamics).

In summary, these results both corroborate and extend previ-
ous work, which demonstrated that skill acquisition in the pole
balancing task is reflected by the statistical properties of fingertip
movement kinematics. The primary motivation for this research
was to determine how the dynamical structure of fingertip fluc-
tuations evolved with learning, and moreover, to determine how
this might have contributed to improved balancing performance.
To address this purpose, the previous data were reanalyzed using
recurrence quantification analysis (RQA) which provided signifi-
cant insight on the dynamical changes that accompanied learning
and furthermore, how the dynamics of fingertip fluctuations var-
ied in response to manipulations of the number of biomechanical
degrees of freedom available to contribute to balancing. Learning
was accompanied by increased stability of movement trajectories
in spite of a reduced tendency for movement trajectories to recur.
Task manipulations, on the other hand, resulted in more intermit-
tent fingertip dynamics, which suggests that individuals were more
tolerant of random fingertip displacements when the task was per-
formed while sitting relative to standing. Such a strategy would
minimize the computational burden associated with maintaining
pole stability.
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