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Oscillating in Synchrony 
with a Metronome: Serial Dependence, 
Limit Cycle Dynamics, and Modeling

Kjerstin Torre, Ramesh Balasubramaniam, 
and Didier Delignières

We analyzed serial dependencies in periods and asynchronies collected during 
oscillations performed in synchrony with a metronome. Results showed that asyn-
chronies contain 1/f fluctuations, and the series of periods contain antipersistent 
dependence. The analysis of the phase portrait revealed a specific asymmetry 
induced by synchronization. We propose a hybrid limit cycle model including 
a cycle-dependent stiffness parameter provided with fractal properties, and a 
parametric driving function based on velocity. This model accounts for most 
experimentally evidenced statistical features, including serial dependence and 
limit cycle dynamics. We discuss the results and modeling choices within the 
framework of event-based and emergent timing.
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So far, studies of single-limb oscillations have essentially focused on oscil-
lators within-cycle dynamics, especially through the analysis of the phase-plane 
representation of motion. Serial dependence (i.e., cycle-to-cycle dynamics) has 
been largely disregarded, except in a few studies focusing on self-paced oscillations 
(Daffertshofer, 1998; Delignières et al., 2004, 2008; Schöner, 1994). Especially, 
Delignières et al. (2008) revealed the presence of fractal serial dependencies in 
series of oscillation periods, which could not be accounted for by classical limit 
cycle models. We focus in the present paper on oscillations performed in synchrony 
with a metronome. Our first aim was to combine the analyses of within-cycle and 
cycle-to-cycle oscillation dynamics, to provide a complete characterization of the 
impact of synchronization on the limb dynamics. In a second step, we propose to 
assess the capability of some candidate models to account for the empirical results.

Original Research
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Contribution of Serial Correlation Analysis 
in Tapping Studies

While serial dependence has rarely been studied in the domain of oscillatory motion, 
it represents a key feature in the related domain of rhythmic finger tapping where 
the analysis of serial short-range and long-range correlations and their evolution 
according to experimental manipulations have been considered a crucial step for 
understanding the underlying processes (Chen, Ding, & Kelso, 1997, Delignières, 
Torre & Lemoine, 2004, 2008; Gilden, Thornton, & Mallon, 1995; Torre & Delig-
nières, 2008a). With close connection to our present concern, studies contrasting 
self-paced and synchronized performance have shown typical changes in the cor-
relation structure of experimental time series caused by external pacing.

In this group of tapping studies, the occurrence of long-range correlations, or 
1/f noise, has been of particular interest. 1/f noise defines a very specific temporal 
structure characterized by persistent dependence between successive observations 
over time; it has been observed in various rhythmic behaviors (Chen et al., 1997; 
Delignières et al., 2004; Gilden et al., 1995; Hausdorff et al., 1996; Torre, Delig-
nières, & Lemoine, 2007b). However, the origin and meaning of 1/f noise are actual 
subjects to debate, challenging current theories for motor control. The literature 
shows two alternative approaches to this issue (Torre & Wagenmakers, 2009). One 
approach focuses on the theoretical signification and the principles which could 
clarify the widespread occurrences of 1/f noise. Another more domain-specific 
approach consists in using long-range correlation properties as further statistical 
criteria for questioning and amending current models of the behavior under study.

The alteration of 1/f correlations under some experimental conditions is a 
key point for investigating the underlying processes. Especially, previous tapping 
experiments have shown that metronome driving is likely to specifically alter the 1/f 
correlation structure and suggested that serial dependence could offer an interesting 
window of observation for analyzing the influence of external constraints on timing 
control processes (Chen et al., 1997; Delignières and Torre, 2009; Hausdorff et al., 
1996; Torre & Delignières, 2008a, 2008b).

Focusing on Serial Correlations in Synchronized Oscillations

Regarding single-limb oscillations, the only published experimental results includ-
ing serial correlation analysis were obtained in self-paced conditions (Daffertshofer, 
1998; Delignières et al., 2004, 2008, see also Beek, Peper & Daffertshofer, 2002; 
Schöner, 1994). Delignières et al. (2004) showed that the series of periods produced 
by self-paced rhythmic forearm oscillations contained 1/f noise, and Delignières et 
al. (2008) proposed to account for this serial dependence by providing the stiffness 
parameter of a hybrid self-sustained oscillator (Kay, Saltzman, Kelso, & Schöner, 
1987) with 1/f fluctuations over successive cycles. This model, and notably the 
fractal generator that injects long-range dependence in the dynamics of the oscil-
lator, will be detailed in the modeling section of this paper.

Note that the above mentioned results obtained in finger tapping cannot be 
straightforwardly generalized to oscillatory motion as several studies have supported 
the idea that tapping and oscillation tasks belong to different classes of rhythmic 
movement (Delignières et al., 2004, 2008; Robertson et al., 1999; Schöner, 2002; 
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Spencer, Zelaznik, Diedrichsen, & Ivry, 2003; Zelaznik, Spencer, & Ivry, 2002). 
Finger tapping is representative of discontinuous movement tasks, involving an 
event-based form of timing control: A central timekeeper is supposed to determine 
periodic cognitive events that trigger discrete motor responses. The mechanism of 
event-based timing has nicely been captured by the well-known Wing and Krist-
offerson (1973) model. In contrast, continuous movement tasks like oscillations 
or circle drawing involve an emergent form of timing, exploiting the dynamical 
properties of movement trajectory (Zelaznik et al., 2002). As a consequence of 
this distinction between the event-based and emergent forms of timing control, the 
way in which synchronization is performed in an oscillation task could hardly be 
inferred from empirical evidences obtained from tapping tasks.

Nevertheless, one could predict that the 1/f correlation structure of oscillation 
periods observed in self-paced condition should be inevitably altered from the 
moment that oscillations are performed in synchrony with a metronome. Indeed, 
whatever the discontinuous/continuous character of movement, the series of asyn-
chronies, or errors to the metronome (ASYN

i
) are the mathematical integration of the 

series of periods (P
i
,) (Chen et al., 1997).  As shown by the schematic representation 

of a synchronization task in Figure 1:

	 P T ASYN ASYNi i i= + −+1 	 (1)
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where T represents the (constant) period of the metronome.

Figure 1 — Schematic representation of the synchronization task. The metronome emits signals S
i
, 

according to a fixed period T. Responses (R
i
) are separated by periods P

i
. Asynchronies (ASYN

i
) are 

defined as the time interval between responses and corresponding metronome signals.
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At this point it is important to notice that the correlation properties of a given 
series is theoretically linked to the correlation properties of its differenced or 
integrated counterparts (for details see Delignières et al., 2006). In particular, the 
integration of 1/f noise corresponds to persistent fractional Brownian motion, a 
typically nonstationary series. Therefore, if periods in synchronization were still 
1/f noise, asynchronies would be highly nonstationary which is inconsistent with 
the essence of synchronized performance. The production of a stable (stationary) 
performance in terms of asynchronies implies that the corresponding series of 
periods present antipersistent serial dependence.

This prediction is consistent with the results obtained in finger tapping by 
Chen et al. (1997) and Torre and Delignières (2008a). The authors evidenced 1/f 
fluctuations in intertap interval series in a self-paced tapping task. In the synchro-
nization condition 1/f fluctuations were seen in the series of asynchronies to the 
metronome, and intertap interval series became antipersistent. Delignières and 
Torre (2009) showed a similar pattern of results in the analysis of series of stride 
intervals and asynchronies collected during self-paced and metronomic walking. 
In both cases, the most intriguing phenomenon was the simultaneous presence of 
1/f fluctuations in both self-paced and synchronization conditions, but in different 
aspects of performance (series of periods in the first case, and series of asynchro-
nies in the second).

Chen et al. (1997) suggested that the synchronization process could induce 
1/f fluctuations by itself. In this view, self-paced and synchronized movements are 
appraised separately, as distinct processes are assumed to be responsible for the 
1/f noise observed in self-paced tapping periods on one hand, and in asynchronies 
in synchronized tapping on the other hand.

Torre and Delignières (2008a) proposed another hypothesis, according to 
which the process which causes 1/f fluctuation in self-paced conditions (as the 
fractal central timekeeper in the case of tapping) is supposed to continue working 
in synchronization. However these correlations expresses differently in synchro-
nization, because of coupling to the metronome. In this perspective, self-paced 
and synchronized movement conditions have to be assessed jointly, as the origin 
of 1/f noise is supposed to be in some process which is common to self-paced and 
synchronized performances.

The aim of the present article was to analyze the effect of synchronization on 
forearm oscillations, i.e., an emergent timing task, to determine whether synchro-
nization is achieved in a similar or different way than in finger tapping, i.e., an 
event-based timing task. In a first step, we present an experiment where participants 
produced self-paced and synchronized forearm oscillations. We propose a thorough 
analysis of oscillations in both conditions, including within-cycle dynamics and 
serial correlations. Our results are discussed in comparison with previous findings 
in event-based timing tasks. Finally, we tested several candidate models to account 
for our experimental effect of synchronization on oscillations’ serial correlations 
and within-cycle dynamics.
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Experiment
Procedure
Data used here were obtained as part of a larger study, crossing unimanual and 
bimanual performances of rhythmic finger tapping and forearm oscillations, in 
self-paced and synchronized movement conditions (Torre & Delignières, 2008b). 
In the present paper we focus on data obtained in unimanual self-paced and syn-
chronized oscillations.

Participants and Experimental Design
12 participants (mean age 29.0 ± 7.2) were involved in the experiment. None of 
them had particular expertise or extensive practice in music. They declared no recent 
upper limb traumatism or neurological injury. They signed an informed consent 
form, and were not paid for their participation.

The experiment was individually performed in a quiet room. Participants were 
sitting on a chair with their elbows supported on each side of the body. In the two 
conditions, participants performed pronation-supination oscillations by manipu-
lating with their dominant hand a 15-cm wooden joystick with a single degree of 
freedom in the frontal plane. At the beginning of the experiment, the position of the 
joystick was adjusted to participants’ comfort. The required movement frequency 
was of 2 Hz. For self-paced oscillations, this frequency was initially presented using 
a 30-s video sequence showing the required forearm oscillations, during which the 
participants did not perform any movement. Immediately after the video they had to 
perform oscillations following the prescribed tempo as accurately and regularly as 
possible, without any feedback. In the synchronization condition, participants had 
to perform the oscillations in synchrony with PC-driven auditory signal delivered 
at a frequency of 2 Hz. They were instructed to synchronize the pronation reversals 
with the signals. In both the self-paced and synchronization conditions they were 
asked to perform regular oscillations, with an amplitude of about 45 degrees on 
each side of the central (vertical) position of the joystick. The angular movements 
were recorded using a potentiometer (Radiospares, 20-K resistance and 25% linear-
ity) located at the axis of the joystick, with a sampling frequency of 300Hz. The 
trials were pursued up to the recording of 600 successive cycles (each trial lasted 
about 5 min). Note that the 8 task conditions (one trial in each condition) of the 
complete experimental design (tapping vs oscillation, self-paced vs synchronized, 
and unimanual vs bimanual), were performed in random order by each participant.

The analyses that we intended to perform require that the system behaves in 
steady state during the whole period of observation. Participants were therefore 
requested to stay concentrated during the whole trials to ensure performance 
stability. This was particularly important for avoiding any drift in time series in 
the self-paced condition but less crucial in synchronization conditions where the 
metronome stabilized the outcome series to achieve stationarity.
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Analyses

Data Reduction.  A bidirectional low-pass Butterworth filter (cut-off frequency 
15 Hz) was applied to the collected voltage data. The successive peaks of the 
obtained waveform series (corresponding to maximal pronation) were then 
detected and their times recorded as time series. The variables of interest were 
series of periods and asynchronies. Periods were computed as the differences 
between two successive maximal pronation times. Asynchronies were defined as 
the difference between the times of the maximal pronation and the corresponding 
auditory signals.

Serial Dependence.  For each series, we applied four complementary analyses 
aiming at a thorough characterization of serial dependence. We first examined 
the spectral properties of series using lowPSD

we
 (Eke et al., 2000), an improved 

version of the classical spectral analysis. The spectral exponent β was estimated 
by the negative of the linear regression slope of the power spectrum in bilogaritmic 
coordinates. As proposed by Eke et al. (2000) we excluded the high-frequency power 
estimates (f > 1/8 of maximal frequency) for the fitting of β. 1/f fluctuations (i.e., 
persistent long-range correlations) are characterized by β exponents ranging from 
0.5 to 1.5, and negative exponents reveal antipersistent (negative) correlation in 
the series. Note that in the latter case correlations are not considered long-range 
correlations (Diebolt & Guiraud, 2005).

Secondly, we applied Detrended Fluctuation Analysis (DFA, Peng, Havlin, 
Stanley, & Goldberger, 1995), working in the time domain. This method is based on 
the analysis of the relationship between the mean magnitude of fluctuations in the 
series and the length of the intervals over which these fluctuations are determined. 
For a fractal series, a power-relationship characterized by the scaling exponent α is 
expected between the mean magnitude of fluctuations and the length of the interval 
over which these fluctuations are observed. 1/f fluctuations are characterized by 
α exponents ranging from 0.75 to 1.25. Exponents comprised between 0 and 0.5 
reveal antipersistent correlation in the series.

Thirdly, we used ARFIMA/ARMA modeling (Auto-regressive Fractionary 
Integrated Moving Average, see for details Wagenmakers, Farrell & Ratcliff, 2004; 
Torre, Delignières & Lemoine, 2007a) to evaluate the statistical evidence for the 
presence of long-range correlation in the series. ARFIMA models contain a process 
of fractional integration that provides series with long-range dependence proper-
ties. In contrast, ARMA models present only short-term dependence (determined 
by the auto-regressive or moving average processes included in the model). The 
method consists in fitting 18 models to the studied series: nine are ARMA (p,q) 
models, p and q varying systematically from 0 to 2, and the other nine are the 
corresponding ARFIMA (p,d,q) models. In these notations p and q represent the 
orders of the autoregressive and the moving average processes, respectively, and d 
is the fractional integration parameter. The best model is selected on the basis of a 
goodness-of-fit statistic that assesses the trade-off between accuracy and parsimony: 
the best model is the one that gives a good account of the data with a minimum 
number of free parameters. We used the Bayes Information Criterion (BIC), which 
was proven to be the most reliable for detecting long-range dependence (Torre et 
al., 2007a). The selection of an ARFIMA model provides a statistical evidence for 
the presence of 1/f fluctuations in the series.
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Finally, we computed the auto-correlation function of series, from lag 1 to 
lag 30. Auto-correlation functions offer a qualitative complement to the previous 
analyses. Especially, long-range correlated series are featured by a slow, power-law 
decay of correlation over time; in contrast, short-range correlated series exhibit a 
very rapid exponential decay of the autocorrelation function.

Limit-Cycle Dynamics.  To obtain a clear characterization of limit cycle dynamics, 
we summarized each trial in a normalized average cycle, following the procedure 
adopted by Mottet and Bootsma (1999), and Nourrit, Delignières, Caillou, 
Deschamps and Lauriot (2003). We retained for this analysis the 10,000 first points 
of each collected position series (corresponding to 33.33 s, and approximately 
66 oscillation cycles). Each cycle was normalized in time using 150 equidistant 
points, by means of linear interpolation, and rescaled within the interval [-1,+1]. 
Point-by-point averaging of these normalized cycles allowed computing a 
normalized average cycle of 150 points. The first derivative was then computed 
from this average cycle, and rescaled within the interval [-1, +1]. The limit cycle 
was portrayed by plotting average velocity against average position. This analysis 
was performed for both self-paced and synchronized oscillation series.

Results

Serial Dependence

Periods in Self-Paced Oscillations.  The mean period was 493 ms, with a mean 
within-series standard deviation of 19 ms. An example of individual series is 
portrayed in Figure 2 (left column, upper graph). The log-log power spectrum 
presented a negative linear regression slope in low frequencies and flattened in 
high frequencies (Figure 2, left column, middle graph). The mean β exponent was 
1.11 (± 0.43). DFA yielded a mean α of 0.86 (± 0.18). ARFIMA/ARMA modeling 
confirmed statistically that series were 1/f noise, detecting long-range correlation 
in all series. The auto-correlation function presented a positive auto-correlation 
at lag one (about 0.20), and then a slow decay with increasing lags (Figure 2, left 
column, bottom graph). Note that even though the auto-correlation looks visually 
higher at lag 2 than at lag 1, a repeated-measures ANOVA performed on the three 
first lags showed no significant differences (F(2,22) = 1.21; p = .32).

Asynchronies in Synchronization.  The mean asynchrony was -10.90 ms, with 
a mean within-series standard deviation of 42.11 ms. An example individual 
series is portrayed in Figure 2 (middle column, upper graph). lowPSD

we
 yielded a 

linear regression over the entire range of frequencies in the log-log power spectrum 
(Figure 2, middle column, middle graph). The mean β exponent was 0.78 (± 0.34). 
DFA confirmed this result with the obtaining of a perfectly linear diffusion plot, 
with a mean α of 0.87 (±0.15). ARFIMA/ARMA modeling detected long-range 
correlation for 9 participants out of 12. Finally, the mean auto-correlation function 
presented a very slow decay over time (Figure 2, middle column, bottom graph), 
typical of long-range dependence in series.

Periods in Synchronization.  The mean period was 498.73 ms, with a mean 
within-series standard deviation of 17.42 ms. An example individual series is 
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portrayed in Figure 2 (right column, upper graph). lowPSD
we

 provided log-log power 
spectra characterized by a linear, positive slope in the low frequency region, and 
a flattened slope in high frequencies (Figure 2, right column, middle graph). The 
mean β exponent was -1.03 (± 0.64), and DFA yielded a mean α of 0.31 (±0.22), 
showing consistently that series were antipersistent noise. Finally, the mean auto-
correlation function presented values close to zero, for the whole range of examined 
lags (Figure 2, left column, bottom graph).

Limit Cycle Dynamics.  Figure 3 (upper graphs) displays the phase portraits of 
two single series obtained in self-paced (left) and synchronized (right) oscillations. 
An anchoring effect (i.e., a decrease of the spatial variability of movement cycles 
revealed by the thinning of the phase plane trajectory) is visible on the right 
side of the synchronization cycle which corresponds to the occurrence of the 
metronome signals. Figure 3 (bottom graphs) also presents the normalized average 

Figure 3 — Limit-cycle dynamics of experimental self-paced and synchronized oscillations. Upper 
graphs: example individual limit cycles. Bottom graphs: normalized average limit cycles (N = 12).
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cycles obtained for the two conditions. Note that these cycles were averaged 
over the 12 participants, but all individual cycles presented similar shapes. At 
first glance, the average cycle in self-paced oscillations looked symmetric and 
circular. In synchronized oscillations, in contrast, an asymmetry appeared between 
the ‘out’ phase (semicycle departing from the reversal on the metronome) and 
the ‘back’ phase (semicycle toward the metronome) of oscillation cycles. The 
former (negative velocity values, from the right to the left) was quasi-circular 
with, nevertheless, a slight shift of the (negative) peak velocity in the first part 
of the semicycle. The latter (positive velocity values, from the left to the right) 
presented a stronger deformation, with a delayed peak velocity, occurring in the 
second part of the semicycle. Note that despite this asymmetry, the two parts of 
the cycle presented statistically equivalent durations (out: 250 ms ±11; back: 
250 ms ±12), and were not mutually correlated (r = -0.06). We finally observed 
a significant negative correlation between the back phase of the cycle and the 
preceding asynchrony (r = -0.37, p < .05).

Discussion
Previous studies showed that the series of periods obtained in self-paced oscillation 
and tapping tasks are featured by similar persistent long-range correlations despite 
some discrepancies due to the different forms of timing control engaged in the two 
tasks (Delignières et al., 2004, 2008). Our present results show that the similarity 
between long-range correlation structures of oscillations and tapping also holds in 
synchronized performance: Oscillating in synchrony with a metronome induces a 
major alteration of the correlation structure of oscillation periods which turn into 
antipersistent noise, in the same way as previously shown for synchronized tap-
ping (Chen et al., 1997; Torre & Delignières, 2008a). Moreover, asynchronies were 
consistently characterized as 1/f noise by the different complementary methods of 
serial correlation analysis. In contrast, the present results differ from previous syn-
chronization tapping results with regard to short-range correlations: For self-paced 
oscillation periods as synchronized oscillation periods, results showed a flattening 
of the log-log power spectrum in the high frequencies. Such flattening slope has 
been considered as the typical signature of emergent timing processes (Delignières 
et al., 2004) as opposed to the positive slope that is typically observed in tapping.

In tapping, synchronization has been conceived a discrete auto-regressive pro-
cess, correcting the following period on the basis of the current asynchrony (Vorberg 
& Schulze, 2002; Vorberg & Wing, 1996). Vorberg and Wing (1996) showed ana-
lytically and by means of numerical simulation that this auto-regressive correction 
process should result in an accentuated negative lag-one auto-correlation in the series 
of periods; this result has actually been shown in experimental synchronization 
tapping data (Chen, Ding, & Kelso, 1997; Torre and Delignières, 2008a; Semjen, 
Schulze & Vorberg, 2000). The present results show that this specific signature of 
linear phase correction is absent in synchronized oscillations, and allow to reject 
the hypothesis of a discrete correction process.

An alternative hypothesis for rhythmic movement synchronization suggests 
that synchronization is achieved through a continuous coupling of the effector, 
conceived as a self-sustained oscillator, to the metronome (Jirsa, Fink, Foo & Kelso, 
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2000; Schöner & Kelso, 1988). From this point of view, the specific deformation 
of the limit cycle we observed between self-paced and synchronized oscillations 
could provide essential information about the actual nature of this coupling process.

At this point it seems important to clarify that we are not arguing that deforma-
tions of the limit cycle necessarily imply the involvement of continuous coupling. 
Indeed, Balasubramaniam et al. (2004) analyzed the effect of synchronization on 
the within-cycle dynamics in an ‘air tapping’ task where participants performed 
rhythmic taps without any mechanical contact. The data clearly showed the pres-
ence of an event-based mode of control, with a discrete error correction process 
in synchronization condition (see also Balasubramaniam, 2006; Torre & Balasu-
bramaniam, 2009). With regard to the within-cycle dynamics, Balasubramaniam 
et al. (2004) showed that in the self-paced condition the movements of the finger 
were quasi-harmonic and symmetrical. In contrast, the kinematic profiles in 
synchronization condition showed a marked asymmetry, with a slow ‘out’ phase 
(semicycle departing from the metronome) and a rapid ‘back’ phase (semicycle to 
the metronome). The durations of these two semicycle were negatively correlated 
(r = -.69), and the degree of correlation was closely linked to the accuracy of syn-
chronization. Finally, the ‘out’ phase was negatively correlated with the preceding 
asynchrony (r = -.63), suggesting that this semicycle represents a ‘corrective’ phase 
implementing the underlying error correction process (Vorberg & Schulze, 2002; 
Vorberg & Wing, 1996).

Our present results show a completely different picture. Despite a slight asym-
metry between the ‘out’ and ‘back’ trajectories, the durations of the two phases 
were neither statistically different nor correlated. Moreover, we evidenced a nega-
tive correlation between the ‘back’ phase of cycles and the preceding asynchronies 
which contrasts with the results by Balasubramaniam et al. (2004). The comparison 
of the phase plot presently obtained in synchronized oscillations and that presented 
by Balasubramaniam and collaborators (see Figure 1, right column, second graph 
from the top in Balasubramaniam et al., 2004) clearly suggests that two different 
synchronization processes are involved in the two tasks.

Our results regarding limit cycle dynamics, and in particular the smooth and 
continuous deformation that appeared with synchronization to the metronome, sup-
port the hypothesis that synchronization is achieved on the basis of a continuous 
coupling process. However, the relative contributions of the oscillator’s intrinsic 
dynamics and the coupling function remain to be clarified. We propose to address 
this issue in the following modeling section. In this view, the present empirical 
characterization of the impact of synchronization on single-limb oscillations with 
regard to serial dependence and limit-cycle dynamics provides a demanding set of 
criteria for assessing candidate models.

Modeling
The dynamics of a single oscillating effector has classically been modeled by a 
hybrid differential equation, associating Rayleigh and van der Pol damping terms 
(Kay et al., 1987):

	    x x xx x x = - 2α β γ ω− −3 2 	 (3)
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This equation describes the intrinsic dynamics of a self-sustained oscillator 
whose frequency is mainly determined by the linear stiffness term ω2. This model 
provides a satisfying account for the empirical relationships between frequency, 
amplitude, and peak velocity during self-paced limb oscillations (Kay et al., 1987).

Schöner and Kelso (1988) conceived the metronome as an environmental 
information attracting the dynamics of the effector toward the prescribed frequency. 
They proposed to add a linear cosine term to drive the limit cycle oscillator. Jirsa 
et al. (2000) further showed that a more complex model including a parametric 
driving term is more appropriate to account for the specific influence of external 
pacing on the limit cycle dynamics. The simplest formulation of the parametric 
driving model obeys the following equation (Fink et al., 2000; Assisi et al., 2005):

	    x x xx x x t t= − − − + +α β γ ω ε ε2 3 2

1 2
cos cosΩ Ω 	 (4)

where Ω is the frequency at which the metronome is presented and ε
1
 and ε

2
 are the 

strengths of the linear and parametric driving terms, respectively. Contrary to the 
linear driving model of Schöner and Kelso (1988), the parametric driving model 
accounted for the decrease of spatial variability in the phase plane at the anchored 
point (Assisi et al., 2005). However, the criteria used for assessing the validity of 
this model remained limited in scope, since they focused exclusively on the analysis 
of the stability properties of limit cycle dynamics.

We first examined the properties of the parametric driving model by Assisi and 
collaborators (2005). We used the following parameters: α = .5, β = 1.0, γ = 0.02, 
ω = 4π, ε

1
 = 0.1 and ε

2
 = 3, and Q = 0.1. These parameter values were consistent 

with those used in recent simulation1 experiments (Jirsa et al., 2000, Leise & Cohen, 
2007). Simulations allowed to reproduce the typical anchoring phenomenon in the 
limit cycle dynamics. However the model failed to account for the presence of 1/f 
noise in asynchronies. Applying lowPSD

we
 to simulated asynchrony series yielded 

a mean β of -0.96 (± 0.21). Consistently, the DFA yielded a mean α of 0.24 (± 
0.07), suggesting the presence of antipersistent dependence. This pattern of results 
confirmed that the parametric driving model was per se unable to generate the 
persistent long-range correlation pattern observed in the experiment.

In consequence, it seems reasonable to assume that the serial correlation 
pattern observed in synchronized oscillations emerges from the combination of 
the oscillator’s intrinsic dynamics (characterized in self-paced condition by 1/f 
fluctuations), and the driving function which induces antipersistent dependence. 
One could argue, nevertheless, that the choice of the driving function was inappro-
priate for generating the expected correlation pattern. Chen et al. (1997) proposed 
a coupling function including feedback delays that seemed able to generate by 
itself 1/f fluctuations. This hypothesis, however, cannot account for the presence 
of 1/f fluctuations in both self-paced (periods) and synchronized (asynchronies) 
conditions, and it remains difficult, from a dynamical point of view, to suggest that 
the intrinsic (fractal) dynamics of the self-paced oscillator could be completely 
overridden by a coupling function. Our statement, suggesting that the pattern of 
correlations arises from the combination of the intrinsic dynamics of the oscillator 
and the driving function offers an integrative framework for self-paced and syn-
chronized oscillations (for a similar approach to event-based timing, see Torre & 
Delignières, 2008a). Therefore, a solution is to start with a model accounting for 
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fractal fluctuations in self-paced oscillations, and to enrich this first model with a 
synchronization process.

Delignières et al. (2008) proposed a model for accounting for the presence of 
long-range dependence in self-paced oscillations. The starting point is the hybrid 
model by Kay et al. (1987) accounting for the dynamics of a single oscillating limb 
(Eq. 3). A noise term of strength Q is added to this model to simulate the perturba-
tions that affect all dynamical systems. In any case, the original hybrid model is 
unable to generate the persistent long-range correlations evidenced in self-paced 
oscillations (Delignières et al., 2008). Seeing that the oscillation periods in this 
model are mainly determined by the linear stiffness parameter ω2, Delignières et al. 
(2008) proposed to provide this parameter with fractal properties over the successive 
cycles. Such a solution was previously explored by Ashkenazy, Hausdorff, Ivanov 
and Stanley (2002) and West and Scafetta (2003), in the domain of locomotion: 
the authors developed the so-called ‘hopping’ model which was able to generate 
a fractal series of stiffness values.

The key element of the hopping model is a linear Markov process δ
j
, generated 

by a first-order auto-regressive equation:

	 δ φδ ηξ
j j-1 j
=  + 	 (5)

where 0< ϕ <1 is a constant and ξ
j
 is a white noise process with zero mean and unit 

variance. The chain then contains “correlated zones” of typical size r:

	 r = −1 logφ 	 (6)

Each δ
j
 could then be considered at the center of a zone of correlated neigh-

bors, the size of which depends on the strength of the auto-regressive process that 
generated the whole chain. The successive states of the system are supposed to be 
activated by a random walk along the chain. The size of the successive jumps of 
this random walk follows a Gaussian distribution of width ρ. This random walk 
generates a series δ

i
, representing the state adopted by the effector for each succes-

sive cycle i. In this process, correlations within the δ
i
 series are assumed to increase 

with the size of correlation within the chain (r), and to decrease as the width ρ of 
the distribution of jumps increases.

Finally, the frequency of the limit cycle is determined, for each successive 
cycle i, by

	 ω ω µδ θξ
i 0 i i
 = +  + 	 (7)

where ω
0
 represents the baseline frequency, μ is a constant, and ξ

i
 is a white noise 

with zero mean and unit variance. The addition of this white noise process of 
strength θ to the series of stiffness values was motivated by the observation of the 
flattening of the log-log power spectrum in the high frequencies (Delignières et 
al., 2004), suggesting the presence of high-frequency random fluctuations. This 
series of linear stiffness parameters is then injected into the hybrid model (Eq. 1). 
Delignières et al. (2008) showed that this model allowed to simulate the 1/f structure 
of periods in self-paced oscillations. Figure 4 (left column) presents the results of 
this model using α = 0.5, β = 1.0, γ = 0.02, and Q = 0.1 for the hybrid limit cycle 
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model, and ω
0
 = 4π, r = 25, η = 0.1, ρ = 25, μ = 1.0, and θ= 0.01 for the hopping 

model. The mean power spectrum and the auto-correlation function were similar to 
those obtained during the experiment for self-paced oscillations (see Figure 2, left 
column). The mean β exponent was 0.85 (SD = 0.52), and DFA yielded a mean α 
exponent of 0.82 (SD = 0.17). ARFIMA modeling detected long-range dependence 
in 97% of the simulated series. We display in Figure 5 (left column) an example of 
the phase-plane representation obtained for one realization of the model, and an 
average normalized limit cycle, computed over 12 randomly selected realizations.

Given the ability of the parametric driving model to account for some essential 
aspects of the coupling to the metronome, we analyzed the properties of series gener-
ated by a combination of the hopping model and the parametric driving model. In a 
first step, we used the simplest formulation of the model, including a linear driving 
term and a position-based parametric driving term (see Eq. 4). This solution yielded 
a satisfying pattern of serial dependence, with persistent long-range correlations 

Figure 5 — Limit-cycle dynamics of simulated self-paced (left) and synchronized (right) oscillations. 
Upper graph: example simulated limit cycles (50 cycles). Bottom graph: normalized average limit 
cycles, computed from 12 simulated series of 100 cycles.
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in asynchronies, and antipersistent correlations in periods. The model moreover 
produced an asymmetric deformation of the limit cycle, with the characteristic 
shifts of peak velocities in the two semicycles similar to our experimental results. 
Nevertheless, the anchoring phenomenon appeared at the opposite reversal point 
of the cycle (i.e., on the left in our conventions), which discarded this modeling 
solution (graphical results of this simulation are not presented).

The very specific deformation of the limit cycle observed in experimental series 
provided a precise criterion to select the most relevant way for modeling synchro-
nization. We tested a number of candidate models, indexing driving to position or 
to velocity, and using sine or cosine functions. The most parsimonious solution 
was to use a higher order parametric driving term (indexed on velocity rather than 
on position), and to use a sine driving function for this term, rather than a cosine 
function. The change of the cosine to a sine was essential for obtaining the anchor-
ing at the right side of the phase plane. This new synchronization model is written:

	    x x xx x x t x t Qi t= − − − + + +α β γ ω ε ε ξ2 3 2

1 3
cos sinΩ Ω 	 (8),

ω
i
 fluctuation from cycle to cycle being determined by the hopping model. 

We used the following model parameters for simulation: α = 0.5, β = 1.0, γ = 0.02, 
Ω = 4π, ε

1
 = 0.3, ε

3
 = 0.05, and Q = 0.1. The parameters specific to the hopping 

model were the same than those previously used for the simulation of self-paced 
oscillation periods.

Using this set of parameters provided satisfying results. The Gaussian prop-
erties of the simulated series were similar to the experimental series, with mean 
asynchrony of -3.50 ms (± 39.07), and a mean period of 499.98 ms (± 0.08). Rep-
resentative examples of simulated series are presented in Figure 4 (upper graphs, 
asynchronies: middle column; periods: right column).

Regarding simulated asynchronies, the lowPSD
we

 yielded a linear regression in 
the log-log power spectrum, over the entire range of frequencies (Figure 4, middle 
column, middle graph). The mean β exponent was 0.93 (± 0.13). DFA gave con-
sistent results with a perfectly linear diffusion plot, and a mean α of 0.93 (± 0.14). 
ARFIMA/ARMA modeling detected long-range correlation in 88% of series. 
Finally, the mean auto-correlation function presented a very slow decay over the 
successive lags (Figure 4, middle column, bottom graph), similar to that obtained 
with experimental series.

For the simulated periods, as for experimental periods, the lowPSD
we

 provided 
log-log power spectra characterized by a linear, positive slope in the low frequency 
region, and a flattened zone in high frequencies (Figure 4, right column, middle 
graph). The mean β exponent was -1.24 (± 0.36), and DFA yielded a mean α of 
0.19 (± 0.05). The mean auto-correlation function presented values close to zero, 
for the whole range of examined lags (Figure 4, right column, bottom graph). Note 
that visual inspection of the graphs could suggest a negative auto-correlation at the 
first lags for simulated periods, whereas a positive auto-correlation at the first lag 
was obtained for experimental series (see Figure 2). However, the auto-correlations 
were not significant at any lag for both simulated and experimental periods, and 
there was no significant difference between the lag one auto-correlations from 
simulated and experimental series (F(1,11) = 11.55, p = .24).

Finally, Figure 5 (right column, upper graph) displays an example of the limit 
cycles obtained from simulated series. The anchoring phenomenon clearly appeared 
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at the oscillator’s maximal position. As for the experimental series, there was a 
significant negative correlation between the durations of the semicycles ‘back’ and 
the preceding asynchronies (r = -0.72). We computed an average normalized limit 
cycle, on the basis of 12 randomly chosen realizations (Figure 5, right column, 
bottom graph). This average limit cycle clearly exhibited an asymmetry similar to 
the experimental cycles, with a precocious velocity peak in the ‘out’ phase and a 
delayed velocity peak in the ‘back’ phase. Note that despite the similarities in the 
positions of the anchor points and the velocity peaks, the shape of the simulated 
limit cycle is slightly different from the empirical one, suggesting that the latter 
involved a stronger nonlinear damping. Further investigations could allow a final 
refinement of the model.

General Discussion
Experimental data allowed us to specify a number of dynamic signatures of self-
paced and synchronized forearm oscillations. Results confirmed that the series 
of periods in self-paced oscillations presented genuine long-range dependence 
(Delignières et al., 2004). In the synchronization condition, the correlation struc-
ture of periods became antipersistent, and 1/f fluctuations appeared at the level of 
asynchronies. These correlation structures were evidenced through the combination 
of spectral, temporal, and auto-correlation analyses (Delignières et al., 2006), and 
attested by ARFIMA modeling (Torre et al., 2007a).

These results paralleled those previously obtained in self-paced versus synchro-
nized tapping performances. Therefore, they could at first sight seem to support the 
hypothesis of a similar synchronization process, i.e., a discrete cycle-to-cycle cor-
rection of asynchronies, underlying synchronized tapping and oscillations. Basing 
on a comparison of our present results and those reported by Balasubramaniam 
et al. (2004) in tapping, we went for a different perspective on synchronization 
in line with the continuous coupling hypothesis developed by Jirsa et al. (2000).

Simulations allowed to test and refine this continuous coupling hypothesis. 
First, we showed that the original parametric driving model proposed by Jirsa et al. 
(2000) was not able to generate the experimentally observed correlation structures. 
A solution for this problem was to provide the stiffness parameter of the model with 
fractal properties. By testing different forms of continuous coupling functions we 
further identified a form of parametric driving based on the oscillator’s velocity as 
the simplest solution to account simultaneously for the empirical cycle dynamics 
and the serial correlation structure. Combined with the hopping model, this cou-
pling function allowed to generate series reproducing most of the experimentally 
established signatures. At this point, two points stand naturally out for discussion: 
(i) the way we chose to provide the oscillator with long-range correlations, and (ii) 
the way to model the coupling between the limb oscillations and the metronome.

To insert long-range correlations into the synchronized oscillations model, we 
provided the stiffness parameter of the model with a fractal cycle-to-cycle variability 
as suggested by West and Scafetta (2003). Therefore, we used the “hopping” model 
which was proven to generate genuine fractal correlations in the series of periods 
produced by a limit-cycle model (Delignières et al., 2008). In the domain of human 
locomotion, West and Scafetta (2003) suggested that this “hopping” model could 
represent the activity a central pattern generator, an intraspinal network of neurons 
capable of producing a rhythmical output. Note that we do not postulate the presence 
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of such a central pattern generator in the forearm oscillations involved in the present 
experiment. Our results show that forearm oscillations and limb oscillations during 
locomotion share similar statistical features that could reveal a general property of 
biological oscillators, characterized by a fractal evolution of stiffness over time. 
This fractal property could represent an essential ingredient for understanding the 
serial dynamics of limb oscillations. The formal architecture of the hopping model 
suggests that effectors present a set of possible neighboring states that are deter-
mined by similar factors and mutually correlated. A simple random walk among 
this set could produce the fractal correlation structure observed during repetitive 
oscillations (Delignières et al., 2008). The biological interpretation of this virtual 
set of neighboring states remains speculative. One could suggest that the multiple 
components that compose the system could potentially present a number of different 
configurations. These configurations could determine some essential properties, and 
especially effector’s stiffness. Different configurations could share some common 
features, determining these virtual “correlated zones” of neighbor states.

In the present work we followed the modeling strategy proposed by Jirsa et 
al. (2000), modeling limb motion by a single hybrid oscillator model. This hybrid 
model was dismissed by Beek et al. (2002), and the authors proposed a system 
of two coupled oscillators which presented a number of advantages as compared 
with the hybrid oscillator model: It notably allowed to account for empirically 
observed nonmonotonic frequency-amplitude relations and phase shifts in response 
to external perturbations. With respect to serial correlation however, a system of 
two coupled oscillators seems only able to generate antipersistent short-term cor-
relations (Daffertshofer, 1998). The first simulation we performed on the original 
parametric driving model (Jirsa et al., 2000), which is essentially a system of 
coupled oscillators similar to that analyzed by Daffertshofer (1998), confirmed 
that this kind of model is unable per se to generate long-range correlations. Future 
investigations should check whether injecting a source of 1/f noise in a system of 
coupled oscillators would allow accounting for our present results while preserving 
the stability properties of the model.

Regarding the way to model the coupling between limb oscillations and met-
ronomic signals, our simulation section allowed us to deepen previous studies: 
although we support the idea that parametric driving is necessary for accounting 
for the anchoring phenomenon in limit cycle dynamics (Jirsa et al., 2000), simula-
tions led us to select a different form of parametric driving than those previously 
used. Fink et al. (2000) and Assisi et al. (2005) choose to couple metronome input 
to limb position (Eq. 4), but they suggested that a parametric driving term coupling 
the stimulus to velocity rather than to position should produce qualitatively similar 
results (Fink et al., 2000). The present work shows that the position-based cou-
pling function does not allow the specific deformation of the limit cycle observed 
in experimental synchronization series, while a velocity-based coupling between 
the oscillator and the stimulus yielded more satisfactory results. As we indicated, 
this solution appeared as the most simple (i.e., parsimonious) for accounting for 
our experimental results.

The use of a continuous driving function to account for the effect of a sequence 
of discrete stimuli might seem counterintuitive and merely convenient from a 
mathematical point of view, although it is clear that the driving function does not 
model the actual signals of the metronome but the way the oscillations dynam-
ics globally adapts to these temporal constraints. Actually, observing kinematic 
changes in oscillations induced by the metronome does not necessarily mean that 
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the coupling between the movement and the metronome is continuous indeed. 
Nevertheless, the present results show that in the case of oscillations, coupling to 
the metronome yields qualitatively different kinematic changes than those observed 
in the tapping experiment by Balasubramaniam et al. (2004) where a discrete cor-
rection of asynchronies was involved.

We believe that the issue of modeling synchronized oscillations using a continu-
ous coupling function instead of discrete error correction should not be considered 
without any regard to the theoretical framework which distinguishes between the 
event-based and emergent forms of timing control (Delignières et al., 2004, 2008; 
Robertson et al., 1999; Schöner, 2002; Spencer et al., 2003; Zelaznik et al., 2002). 
Although there is probably no doubt that a link between timing demands and trajec-
tory dynamics does exist indeed, the nature, or hierarchy of this relationship (and 
as a consequence, the nature of appropriate models) may be conceived differently 
according to whether one considers event-based or emergent timing. Event-based 
timing theory assumes a dissociation between the level which is responsible for 
the representation of timing goals and the level of motor implementation (Wing 
& Kristofferson, 1973). Then, one may choose to focus either on the way time 
intervals (absolute, or relative to a metronome) are estimated and controlled (Vor-
berg & Wing, 1996), or on the way motor implementation adapts and serves these 
timing goals (Balasubramaniam et al., 2004). In contrast, emergent timing theory 
considers that timing goals and movement dynamics cannot be assessed separately, 
as the movement trajectory does not only bring the effector to a given point at the 
required times t, t+1, t+2, etc., but temporal regularity arises from the consistency 
of the oscillator’s dynamical properties (Schöner, 2002; Zelaznik et al., 2002). 
Movement dynamics may be considered as serving event-based timing (as it may 
also serve any other accuracy demand2) while it generates emergent timing. This 
suggests that for emergent timing the system is organized in such a way that the 
influence of the discrete metronome is continuous, given the continuous character 
of the underlying control process.

Finally, the issue of modeling synchronized movement tasks using a continu-
ous, within-cycle coupling function or a discrete, cycle-to-cycle error correction 
process also rises a connected issue that needs further investigation: While the auto-
regressive correction of asynchronies which has usually been assumed in tapping 
(Vorberg & Schulze, 2002) supposes that the asynchronies are the time intervals 
supporting information used to synchronize the movement to the metronome, a 
within-cycle coupling between the movement and the metronome rather suggests 
that the perceived period of the metronome is the time interval of reference that 
the movement cycle has to match.

Notes

1. 	 All simulations in this modeling section, were performed using a four-stage Runge-Kutta 
algorithm, following the scheme described by Burrage, Lenane and Lythe (2007, pp. 11–12), for 
second-order stochastic differential equations with additive noise, with a fixed step size of 0.001 
s 100 series of 512 data points were generated for each proposed model.

2. 	 For example, one may draw an analogy with a study of Fitt’s task by Mottet & Bootsma 
(1999): The authors modeled the reciprocal aiming movement using limit-cycle dynamics and 
evidenced notably an increasing contribution of the nonlinear stiffness parameter with increasing 
task difficulty. The changes in the limit-cycle dynamics were assumed to serve the spatial accuracy 
demands.
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