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Abstract

A technique (recurrence quantification analysis; RQA) for analyzing center of pressure (COP) signals is presented and applied
to data obtained by having participants stand with the head forward or sideways and with eyes open or closed. RQA is suitable
for short, nonstationary signals and quantifies dynamical (deterministic) structure and nonstationarity. Results indicated that
vision affects the deterministic structure (in degree and complexity) of COP motions and that differential optical flow structure
(radial versus lamellar flow) induced by spontaneous sway under different head orientations affects COP nonstationarity.
Implications of these findings and the sensitivity of RQA to subtle time-evolutionary properties of the COP are discussed. © 1999

Elsevier Science B.V. All rights reserved.
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1. Introduction

A recent concern in the postural control literature
has been that of developing analytic techniques which
go beyond characterizing gross properties of postural
sway (i.e. variability measures). It is hoped that such
methods may shed light on underlying control processes
by revealing meaningful structure in spontaneous pos-
tural fluctuations that occur in the absence of external
perturbations. For example, Collins and De Luca [1]
have applied methods from statistical mechanics which
reveal structure in postural sway in terms of the corre-
lation functions of center of pressure (COP) signals
over various time scales. The analysis has formed the
basis for several proposed models of postural control,
ranging from the dual correlated random walk model
consisting of open- and closed-loop control regimes
[1,2], to a refinement of this view in terms of a pinned-
polymer model of postural control [3,4], and to a
conception of the role of postural fluctuations in terms
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of a perceptual, exploratory function [5,6]. This work
has also spurred the development of models based upon
similar stochastic processes (e.g. the Ornstein—Uhlen-
beck model [7]). There have also been attempts to
distinguish deterministic and stochastic sway compo-
nents. While these have thus far yielded inconsistent
results [7], present evidence favors a stochastic account
[8].

Another concern has been that of characterizing
COP nonstationarity [7,9—-11]. COP time series show
what is termed bounded nonstationarity—within the
bounds of the base of support (usually, the anterior—
posterior (AP) and the lateral extents of the feet),
fluctuations of the COP are typically nonstationary in
both the first and second moments (mean and vari-
ance).! Nonstationarity violates the assumptions of
many preferred analyses, including the Fourier trans-
form. Largely, spectral techniques based on the Fourier
transform are inappropriate—with the exception of

' This reflects the fact that, from a purely biomechanical perspec-
tive (i.e. not considering the role of supra-postural task constraints),
postural control is underconstrained [5,12—14].
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time-frequency methods [11] designed to yield evolving
spectral representations of nonstationary signals—as
are other analyses such as estimates of correlation
dimension and Lyapunov exponents [15]. In short, the
nonstationary properties of postural sway may limit
such attempts as discussed above to provide a deeper
account of the structure of postural sway (and, in turn,
to provide a deeper account of postural control pro-
cesses and mechanisms). An exception is stabilogram-
diffusion analysis [1,2], which is designed to provide
measures for data exhibiting random walk (such as
COP signals). One hallmark characteristic of random
walk processes is nonstationarity in the form of drift.

The recent interest in these aspects of COP dynamics
has largely followed the development of analytic tech-
niques. These techniques promise insights into a num-
ber of the deeper issues confronting an understanding
of postural control. For example, fundamental to such
an understanding is the issue of whether spontaneous
motions of the body are purely random, largely
stochastic (but not statistically independent), determin-
istic, or perhaps a blend of deterministic and stochastic
elements. The importance of this aspect of COP dy-
namics becomes apparent when one considers that pos-
tural fluctuations are primarily produced by the
postural system, and yet must also be resolved and
possibly countered by the postural system. Whereas
external factors such as gravity and the support surface
obviously contribute to postural fluctuations, the major
source of the fluctuations (in the absence of external
perturbations) is the postural system itself.

In this paper, we present an application of a recently
developed method, recurrence quantification analysis
(RQA), a nonlinear and multi-dimensional technique
which does not assume data stationarity (and, more-
over, which places no restrictions on the statistical
distribution of data or on data set length) and which
provides a characterization of a variety of features of a
given time series, including a quantification of deter-
ministic structure and of nonstationarity [16—18]. These
features of RQA make it an ideal tool for the analysis
of COP data with respect to the above concerns. We
demonstrate the utility of RQA through an examina-
tion of the role of vision and of optic flow structure in
the control of upright, unperturbed stance. The data
were previously reported under a different analysis—a
variant of stabilogram-diffusion analysis [1]—by Riley
et al. [19]. A reexamination of these data here is useful
because the previous results provide a basis for com-
parison, and, moreover, because multiple methods of
analysis of complex behaviors such as upright standing
may prove more useful than any one method alone. We
discuss the potential insights provided by this analysis
regarding the nature of postural sway and postural
control and regarding the effects of vision and differen-
tial optical structure on postural sway. Some caveats

and notes on implementing the analysis are also
discussed.

1.1. Recurrence plots and recurrence quantification

The basic idea behind RQA is that of local recur-
rence, or neighborliness, of data points in reconstructed
phase space. The notion of phase space reconstruction
(see, e.g. Abarbanel [20]) is based upon a mathematical
proof, known as the embedding theorem [21], that
knowledge of the dynamics of a potentially multivariate
system (e.g. the motions of which may be governed by
a system of one or more equations written in terms of
one or more dynamical variables) may be obtained
through the measurement of only one scalar time series.
This is because the influence of these other dynamical
variables is contained in the measured signal. The sys-
tem is then studied by reconstructing the space of the
true dynamics using a coordinate system of surrogate
observables. Since it is unlikely that all of the dynami-
cal variables of a system can be measured, or even
known, a coordinate system of surrogate variables is
created by taking the measured signal and a number of
time-lagged copies of the signal. This is termed embed-
ding the measured signal into a higher-dimensional,
reconstructed space. The space created using these
‘fake’ observables allows us to study the true dynamics
of the system in question because the reconstructed
space is related to the original phase space by smooth,
differentiable transformations; this preserves certain in-
variant features of the original dynamics, which may
then be studied in the reconstructed space. There are
several criteria for choosing the time lag to use in
creating the reconstructed coordinate system and for
establishing how many coordinates to use in recon-
structing the space (i.e. establishing the embedding
dimension of the reconstructed space); these will be
discussed later.

Once the process of phase space reconstruction is
completed, one proceeds in RQA by identifying data
points that are neighbors (points which are close to
each other) in the reconstructed space. Points separated
in time but which are (spatial) neighbors in the recon-
structed space reflect recurrence in time—as time pro-
gresses and the observed dynamics evolve, data points
return to the same region of phase space (they recur).
The basic idea is to take a sphere of radius r centered
on a point x(7) in the reconstructed space and to count
the number of points which are within the distance r
from x(7). This is achieved for each i=1,. .., N (where
N is the total number of data points), by measuring the
distance between data points x(j), where j=1,..., N,
and x(i). That is, for each data point in the embedded
series, the distance between it and every other data
point is calculated. If this distance is less than or equal
to r, then the points are considered to be recurrent. The
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degree and nature of recurrence in a time series is
represented graphically through the recurrence plot,
developed by Eckmann et al. [22]. Fig. 1 displays a
recurrence plot created by analysis of a COP time series
from the data set discussed below. Each darkened pixel
on the recurrence plot represents a recurrent point.

It is useful to reiterate the above process with refer-
ence to Fig. 1. Begin with a value of i/ along the
abscissa; then, for each value of j along the ordinate,
calculate the distance between x(i) and x(j). If this
distance is less than or equal to r, darken a pixel at
(i, j ). Then, continue this process for all i. When i =, a
point is compared with itself, which will obviously
result in a distance of 0 and identification of recurrence.
This is seen in the central diagonal line in the plot.
Also, for fixed r, the two triangular halves of the plot
will be reflections of one another [16,17]; for the origi-
nal [22] algorithm, r was allowed to vary adaptively (to
accommodate a predetermined number of neighboring
data points), and thus the two halves of the plot would
not necessarily be mirror images. It should be noted at
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this point that several input parameters are required for
RQA (e.g. time lag, embedding dimension, and r). One
of the more difficult aspects of implementing and inter-
preting RQA lies in choosing input parameters. This
will be discussed below in more detail.

Before presenting the quantitative measures derived
from recurrence plots, some qualitative features [17,22]
will be reviewed. A basic distinction may be made
between large-scale typologies and small-scale textures
[22]. There are three types of large-scale typologies:
homogeneity, drift, and periodicity. Homogeneity refers
to a homogeneous distribution of points throughout the
plot, resulting in a roughly uniform plot. This is ex-
pected for white noise, which is random and uniformly
distributed (there is no dynamical structure). However,
such a typology may also be associated with determinis-
tic chaos; the distinction between this and the previous
example is apparent in the small-scale texture (see
below). Fig. 1 does not display a homogeneous typol-
ogy, as recurrent points tend to be clustered in distin-
guishable regions. Drift refers to a tendency of the plot
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Fig. 1. Example recurrence plot of 30 s of COP data. Darkened points represent points which are recurrent in time (which are neighbors in
reconstructed phase space). The main diagonal line results from comparing a point with itself. Input parameters were: embedding dimension = 10;
time lag = 0.04 s; and radius r = 10% of the mean distance between data points in the reconstructed space (these parameters are discussed later

in the text).
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to pale with increasing distance from the main diago-
nal (the farther away from the diagonal, the fewer the
points). If the paling is uniformly progressive, this
may reflect nonstationarity in the form of a gradual
trend. If the density changes abruptly, this may reflect
a sudden change in level. Drift is readily apparent in
Fig. 1. Finally, periodicity is indicated by the presence
of long diagonal lines parallel to the main diagonal.
As the name suggests, this typology reflects a strong
rhythmic structure in the data. Fig. 1 does not exhibit
periodicity.

Several types of small-scale texture may be iden-
tified. First, single, isolated recurrent points reflect
random, stochastic behavior. Several such points may
be seen in Fig. 1. Second, short line segments may be
observed. If the segments are diagonal and parallel to
the main diagonal, this means that strings of vector
patterns in the time series repeat themselves multiple
times over the observation period—this indicates de-
terminism. In terms of attractor dynamics, this means
the system revisited the same region of the attractor at
different times. White noise would not be expected to
show diagonal segments, but a deterministic system (a
sine wave, a chaotic attractor, etc.) would. The length
of the segments is inversely proportional to the magni-
tude of the largest Lyapunov exponent of the signal
[22], and thus the maximum observed line length may
itself be a measure of interest (we did not analyze this
variable here). Several upward diagonal segments may
be seen in Fig. 1. If the segments are diagonal but
perpendicular to the main diagonal, vector sequences
at different locations in the series are mirror images of
one another. This is expected for simple oscillations
such as sine waves—if a wave is bisected at a peak or
trough, the resulting halves are mirror images. Such
texture is not widespread in Fig. 1, but is present. If
the segments are horizontal or vertical, isolated vector
sequences match closely with a repeated string of vec-
tors farther along the dynamic (separated in time).
This is also present in Fig. 1. The third texture is the
checkerboard texture, the grouping of line segments
into small regions of the plot. This reflects the system
visiting different areas of the attractor, and switching
back and forth between them (e.g. for the Lorenz
system, alternation between the attractor’s two lobes).
This texture is not present in Fig. 1.

Two more features may be identified [17]. First,
bands of white space (no recurrent points) indicate
transient activity or an abrupt level change, and may
reflect an underlying state change. Large bands of
white space are seen in Fig. 1. Second, there may be a
sudden change in density of recurrent points as one
moves along the axes of the plot. This indicates a
possible change of dynamical regime, and may be ob-
served after a transient period (e.g. it may be seen
after a band of white space). This is not seen in Fig. 1.

While visual inspection of recurrence plots may be
revealing, a significant advance was the quantification
of recurrence plots (RQA) [17]. Five measures may be
obtained by RQA: Percent recurrence (YoRECUR),
percent determinism (%DET), the ratio of these quan-
tities (ratio), entropy, and trend. All of these variables
are computed based on recurrent points in one trian-
gular half only of the recurrence plot. The measures
are briefly explained below; see Webber and Zbilut
[17] for more details.

%RECUR is the number of recurrent points in the
plot expressed as a percentage of the number of possi-
bly recurrent points (i.e. of the total number of i—j
distance comparisons, with the exception of when i =
j—the main diagonal). It is thus a measure of the
extent to which the recurrence plot is covered by re-
current points, or, equivalently, the percentage of
points within a distance r of one another. The level of
%RECUR obtained for a given time series will depend
to an extent upon the specified value of r. For Fig. 1,
%RECUR = 0.59 (computations were made with input
parameter values discussed below).

%DET 1is the percentage of recurrent points which
fall on upward diagonal line segments. Observed levels
of %DET will depend upon the specified definition of
the number of points forming a line segment. This is
usually set as two adjacent recurrent points with no
intervening white space (larger, more conservative val-
ues may be chosen). %DET reflects the degree of de-
terminism observed because, as stated above, upward
diagonal line segments indicate that the system is re-
visiting the same region of the attractor (or of the
reconstructed space) repeatedly. That is, the dynamics
are reliable or repeat themselves, which is, essentially,
what ‘determinism’ means. In Fig. 1, %DET = 59.60.

Ratio (%DET/%RECUR) may be useful in detect-
ing changes in physiological state [16]. During changes
in states, %RECUR usually decreases while %DET
usually changes very little. This quantity is more use-
ful to this end if RQA is performed using a moving
window (over repeated epochs of data windows). In
fact, all of the measures discussed here may be ob-
tained in this fashion if changes in underlying state are
of interest. We do not pursue this analysis here, but
believe that this may be a valuable future direction.

Entropy is computed as the Shannon entropy of a
histogram of line segment lengths (a simple frequency
histogram in which the number of observed upward
diagonal lines of different lengths are counted). Seg-
ments of particular lengths are counted and dis-
tributed over integer bins of a histogram, where each
bin represents a possible line length. Entropy E is
computed as

E= _ZPb log,(Py) (1)
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where the P, indicate bin probabilities of all nonzero
bins greater than or equal to the number of recurrent
points defining a line [17]. Bin probabilities are empir-
ically determined based on the frequency with which
lines of different lengths are observed. For example, if
100 upward diagonal lines—ten each of ten different
lengths—are observed, then the probability of a given
line falling in a given nonzero bin is 0.1. Entropy is a
reflection of the complexity of the deterministic struc-
ture of the time series. This is because the entropy
measure is computed not with respect to the entire
recurrence plot, but only with respect to the upward
diagonal lines which reflect deterministic structure. It
is important to note, as recent debates have shown,
that no one measure of overall system complexity has
emerged as sufficient [23]. Nevertheless, entropy is a
useful characterization of the deterministic structure
of a given data set, as more complex dynamics will
contain more line segments of longer lengths than is
to be ordinarily expected (the probability of observing
a line segment of a given length usually decreases
with increasing line length [17]). Thus, a larger num-
ber of bits will be required to represent the distribu-
tion of line segments for more complex dynamics
(resulting in a higher entropy value). Thus, we would
expect deterministic chaos to yield a higher entropy
value than either a noiseless sine wave (simple deter-
ministic structure) or white noise (for which we would
expect no, or at most a few, upward diagonal line
segments, because it has no deterministic structure).
Entropy computed for the distribution of line lengths
for Fig. 1 was 1.73 bits.

Trend is a quantification of the paling of recur-
rence plots away from the main diagonal, and is
computed as the slope of the line of best fit drawn
for %RECUR as a function of distance from the
main diagonal. Non-zero trend indicates drift in the
system, while zero (or very close to zero) values indi-
cate stationarity. Trend is expressed in units of
%RECUR per 1000 data points, and, since trend is a
quantification of the paling of recurrence plots away
from the diagonal, trend values will usually be nega-
tively signed (i.e. if %RECUR decreases with increas-
ing distance from the diagonal, the regression line will
have a negative slope). Computed trend for Fig. 1
was —0.51.

RQA is an ideal analytic tool for the analysis of
COP data, and of physiological or biological move-
ment data in general, in that it does not require data
stationarity (nor does stabilogram-diffusion analysis
[1,2]), any particular statistical distribution of the
data, or any particular data set size. With respect to
the latter point, it has been suggested that RQA may
provide meaningful results even if the observation pe-
riod is shorter than the characteristic times of the
dynamic in question [17].

1.2. Vision and postural control

In the present paper RQA is applied to determine the
effects of vision and of the specifics of optical structure
on spontaneous postural sway. A well-known result
under more basic analyses is that the body sways more,
in both the AP and mediolateral (ML) directions, when
vision is unavailable [24—26]. Recent experiments [2,5,6]
on unperturbed stance have examined the effect of vision
(eyes-open versus eyes-closed) on the short- and
long-time scales of postural sway identified in the analysis
of Collins and De Luca [1]. The results of these
experiments suggest that postural variability (as indexed
by the level of stochastic activity) and correlated COP
activity decrease with eyes-open. The latter finding
suggests that postural control is, in a sense, more on-line
or moment-to-moment when vision is available then
when it is not—decreased correlations may mean that
the current postural state is less dependent upon previous
postural states. A decrease in correlated activity with
eyes-open means that, on average, COP motions are
more similar to Brownian motion (a stochastic process
with uncorrelated or independent increments) than with
eyes-closed. One possible interpretation of this—an
interpretation which is readily tested using RQA —is that
with the eyes-closed, COP motions are characterized by
increased deterministic structure. The increase in
correlations with eyes-closed could also simply indicate
a change in the bias of the correlated random walk
process, however, and may not relate to increased
determinism.

The experiment reported here was originally reported
by Riley et al. [19] (their Experiment 2), who analyzed
the data under stabilogram-diffusion analysis. In the
experiment, participants looked at a layout of objects
arranged in depth at a distance of approximately 1 m—a
layout designed to enhance motion perspective and
parallax (see description below). Participants’ bodies
were aligned perpendicular or parallel to the
environmental arrangement (they either directly faced
the arrangement or viewed it with the head turned to the
side). The issue was whether vision’s effect on postural
fluctuations depended on the particulars of optical
structure induced by the two head orientations. One
hypothesis regarding the visual control of stance is that
since AP sway results in radial transformations
(expansions, dilations) of closed optical contours
corresponding to frontal surfaces [27,28], this optical
information is available for the control of stance. This
makes sense if one is looking straight ahead, but not
when one is looking to the side. For the latter case, it has
been suggested that motion parallax may be more
relevant [29]. ML sway is associated with motion parallax
with the head facing forward and radial expansion/
dilation with the head facing the side. If vision’s effect
on posture depends upon the details of optical structure,
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the effects of the particular environment that is viewed
and the person’s orientation to the environment should
be seen in the structure of postural sway. Certain work
[30] suggests, however, that optical specifics may be
irrelevant—i.e. vision’s effect is general, and the differ-
ence between eyes-open and eyes-closed depends only
on the availability of perceptual information, whatever
its form. Furthermore, these is reason to believe that
vision is not necessarily a dominant modality in pos-
tural control. Perceptual information about posture
and orientation from light fingertip contact with a
nearby surface has the same effect on postural fluctua-
tions as vision [6,31,32].

Riley et al. [19] found that the head-forward versus
head-to-side manipulation resulted in one effect: nega-
tively correlated COP activity over long time scales
decreased for AP sway for eyes-open relative to eyes-
closed, but only with the head-to-side. That effect
means when the head faced the side and the eyes were
open, AP sway showed a decreased tendency to reverse
direction. They also found reduced effective stochastic
activity with eyes-open, and, with the exception of the
above finding regarding head orientation, that vision
generally reduced correlated COP activity over both
time scales. Collins and De Luca [2], Riley et al. [5], and
Riley et al. [6] also observed these vision effects.

1.3. Aims of the present work

The current application of RQA to these data was
designed to: (a) provide a baseline assessment of COP
signals with respect to the degree of observed determin-
istic dynamical structure (%DET), the complexity of
this deterministic structure (entropy), and COP nonsta-
tionarity (trend); (b) compare these measures across
experimental conditions of eyes-open and eyes-closed
and head-forward or head-to-side; and (c) evaluate the
interpretation of an increase in correlated COP activity
with eyes-closed as reflecting an increase in determinis-
tic structure. In general, we expected COP data to show
a blend of stochastic and deterministic dynamics (we
expected to observe 0 < %DET < 100). We also evalu-
ated if the nature of this blend would change as a
function of the visual manipulations of eyes-open ver-
sus eyes-closed and head-forward versus head-to-side.
Investigation of these issues is expected to provide
significant insights into postural control mechanisms
and processes. Classification of COP dynamics with
respect to deterministic structure, complexity, and non-
stationarity—and how these characteristics change un-
der the present experimental manipulations of visual
information—may reveal significant features of pos-
tural behavior for which models of postural control
must account. For example, if observed, a blend of
deterministic and stochastic behavior would indicate
that both purely stochastic and purely deterministic
models would be limited.

2. Method
2.1. Participants

Ten participants, four graduate students and six un-
dergraduate students at the University of Connecticut,
participated in the experiment. The graduate students
volunteered, and the undergraduates received partial
course credit. Five participants were male and five were
female. All had normal or corrected-to-normal vision,
and none reported a history of skeleto-muscular disor-
der or an injury at the time of the experiment. Partici-
pants’ ages ranged from 17 to 31 years, heights ranged
from 149 to 176 cm (mean of 158 cm), and weights
ranged from 43.12 to 82.65 kg (mean of 59.93 kg).

2.2. Apparatus and data collection

COP data were obtained at a sampling rate of 100
Hz using a Kistler multicomponent force platform
(Type 9281B) and Kistler charge amplifier (Type 9865)
set to 10 000 pC on both principal axes of the platform.
For each trial, participants stood barefoot on the plat-
form, arms relaxed at the sides, feet abducted 10°, and
heels 3 cm apart mediolaterally. Participants were in-
structed to stand still yet relaxed and to look at the
depth-grating apparatus shown in Fig. 2. The depth-
grating apparatus consisted of three rows of nine
wooden dowels, with each dowel 0.8 cm in diameter.
The dowels in a given row were 10 cm apart, and the
distance between successive rows was 18 cm. Partici-
pants were positioned 122 cm from the nearest row.
The whole apparatus was 92 cm wide (subtending a
horizontal visual angle of 41.32° at the nearest row)
and 105.6 cm high (subtending a vertical visual angle of
46.8° at the nearest row), and was positioned such that
participants’ eyes were directed roughly at its center.
Participants were instructed simply to ‘look at the
apparatus’, and were not instructed to focus specifically
on the dowels or the wall behind the apparatus. Data
collection was initiated after participants took position
on the platform and signaled the experimenter that
their breathing was normal and that they were ready to
begin. There were ten trials in each of four experimen-
tal conditions: (1) eyes-open, head straight, (2) eyes-
closed, head straight, (3) eyes-open, head sideways, and
(4) eyes-closed, head sideways. Trials lasted 30 s each
(yielding 3000 data points per trial), and participants
were allowed to rest as needed.

2.3. Analysis procedure

Detailed instructions for implementing RQA may be
found in Webber [33]. Here, we present a summary of
the analysis. The first step in RQA is to determine
appropriate choices of the following input parameters:
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Fig. 2. Experimental apparatus. Panel (a) shows the depth-grating apparatus, and panels (b) and (c) show the two head orientations assumed by
participants in relation to the apparatus. The depth-grating apparatus was designed to enhance optical transforms resulting from spontaneous

postural sway.

time lag, embedding dimension, r (radius), and line
length. With respect to choosing a time lag, there are
two predominant prescriptions. The first is to choose
the lag at which the first zero-crossing of the autocorre-
lation function (ACF) for the data occurs, or, if there is
no zero-crossing, at which the first local minimum of
the ACF occurs. However, for nonstationary data (in-
cluding the present COP data), the ACF decays very
slowly [33]. One option is to difference the data, and
compute the ACF for this differenced series. This may
not always be suitable, however [34]. Another prescrip-
tion is to choose the first local minimum of the average
mutual information (AMI) function [35]. However, be-
cause COP signals are usually stochastic and irregular
and not periodic, the AMI function is rather ‘messy’
and shows no obviously distinct minima. Another op-

tion is to choose a time lag based upon obtained output
measures [36]. Basically, as long as a time lag of 1 is not
chosen (this tends to falsely linearize the data [33]), the
choice of time lag for RQA is not utterly crucial.
However, there is one strategy that may yield more
optimal results for the choice of time lag (and for the
other input parameters): compute RQA measures for a
range of input parameter settings, and choose these
settings from a range in which small increments in
parameter settings yield smooth (i.e. not large, discon-
tinuous jumps) changes in the output measures. In
support of this strategy, Trulla et al. [37] noted that
recurrence measures computed from the logistic equa-
tion changed little under changes in input parameters.
As a method of checking the extent to which output
measures may reflect artifactual results, RQA measures
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may be compared with those obtained from analyzing
randomly shuffled data (samples are randomly re-or-
dered to create a new time series) under the same input
parameter values as the intact data [17,38,39]. Random
shuffling destroys time-correlation information in the
series, and this should be reflected by a substantial drop
in the magnitude of RQA measures. If random shuffl-
ing fails to substantially change obtained RQA mea-
sures, the choice of input parameters should be
re-examined. Using this strategy, the time lag chosen
here for COP time series was four samples (0.04 s). We
also computed the ACF for several short, stationary
segments of data taken from several randomly chosen
time series. First zero-crossings were in the range of
three to five samples, in agreement with the time lag
chosen using the above strategy.

The situation is similar for choosing an embedding
dimension. While there exist techniques for arriving at
the embedding dimension [20], the point of RQA is not
to obtain estimates of dimensionality. Thus, the same
strategy as presented above is generally the optimal
one: choose an embedding dimension from a range in
which small changes in embedding dimension lead to
correspondingly small changes in output measures, and
check the validity of the setting by comparing the RQA
measures of randomly shuffled data. The most impor-
tant idea with respect to this parameter is to choose a
high enough embedding dimension to allow for the
interplay of a reasonable number of dynamical vari-
ables. It is generally best to err on the ‘too high’ side
than the ‘too low’. However, if too high an embedding
dimension is chosen, the effects of noise may be am-
plified. Webber [33] recommends, for the analysis of
physiological data, beginning with an embedding di-
mension in the range of 10—20 and working downward
from there.

The choice of the radius r of the sphere to center on
x(i) is more principled. If one chose a radius r=0,
then only exactly matching points would be considered
recurrent. Exact matches would be expected only for
pristine mathematical examples, however. Thus, instead
of exact matches, look for ‘ball-park’ matches. Gener-
ally, one prescription is to choose r = 10% of the mean
distance between data points in the reconstructed space.
Since the idea behind RQA is to look for local recur-
rences, using a very large r would result in deviation
from this idea (e.g. approaching global recurrence).
Furthermore, since r will affect observed values of
%RECUR and %DET, one can track the behavior of
%RECUR and %DET over changes in r, in accordance
with the above strategy. Choose r such that obtained
%RECUR responds smoothly and is not too high (e.g.
stay local; % RECUR =1 — 2 is not too low) and such
that %DET does not saturate at the floor of 0 or the
ceiling of 100, as approaching these limits will tend to
suppress variance in the measure (Webber, personal

communication, March 1998). This strategy yielded a
choice of r=10% of the mean distance between data
points in the embedding space for the present analysis.
Another strategy is to plot, in log—log coordinates,
obtained %RECUR over a range of r values and for a
fixed time lag and embedding dimension (Zbilut, per-
sonal communication, June 1998). For values of r
which are too low, the plot will oscillate (reflective of
noise), while for an appropriate range of r the plot will
be roughly linear.

Generally, the number of successive points defining a
line segment should be 2. A value of 1 would be too
low (all recurrent points would be ‘lines’). Defining this
number to be higher than 2 is a conservative approach,
and may be wise if measurements contain a high degree
of contamination. If the more liberal value of 2 is used,
results may still (and always should) be checked against
randomly shuffled data.

Given these choices of parameter settings, we pro-
ceeded as follows for each trial. The measured AP COP
time series were embedded in a space of embedding
dimension 10, using the measured signal and time-
lagged (lag=0.04 s) copies of the measured signal as
coordinates.? Distances between points x(i) and x(j),
for i,j,=1,..., N were computed (using a Euclidean
normalization [36]) to create the recurrence matrix. The
recurrence matrix was rescaled by the maximum dis-
tance between points (other rescaling options are avail-
able; see Webber [33]), and computed distances were
then compared to the pre-determined radius size r =
10% of the mean distance in the reconstructed space.
Points separated by distances less than or equal to r
were considered recurrent. %) RECUR was computed as
the percentage of recurrent points (the ratio of the
number of observed recurrent points to the total possi-
ble number). %DET was computed as the percentage of
recurrent points falling on an upward diagonal line,
using a defined line length of two points. Ratio is the
simple ratio of %DET to %RECUR. Entropy and
trend were computed as defined above. These RQA
measures were averaged across trials per condition for
each participant and submitted to analysis of variance
(ANOVA) with vision (eyes-open versus eyes-closed)

2 Given the multi-dimensional aspect of RQA, and that the embed-
ding theorem [21] states that measurement of only one variable of a
system contains information about all of the dynamical variables in
operation, ML sway was not analyzed separately in the present case.
It is assumed that AP and ML sway are dynamically linked properties
of postural control. In this case, analysis and comparison of both
sway components would be redundant and illogical, and thus was not
performed. However, this assumption is subject to scrutiny. Winter et
al. [40] have argued for the independent control of AP and ML sway.
This does not necessarily mean, though, that AP and ML sway are
not dynamically linked variables in the manner in which the embed-
ding theorem is concerned. Future studies to address this problem are
certainly warranted.
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and head orientation (facing forward or to the side) as
independent factors. One trial for one participant was
identified as an outlier based upon an observed value of
%RECUR greater than the median for that condition
plus two standard deviations [41]; data from this trial
were discarded.

3. Results

Sample recurrence plots from each experimental con-
dition from one participant are pictured in Fig. 3. All
of the plots contain isolated single recurrent points
(indicating the presence of noise), upward diagonal line
segments (indicating deterministic structuring) as well
as downward diagonal line segments and vertical/hori-
zontal line segments, and bands of white space (indicat-
ing short-term transient behavior). These plots are
representative of plots for each condition, though there
was a great deal of inter-subject variability—and, for
each subject, inter-trial variability—in the qualitative
features of the plots. The most notable qualitative
differences between these plots which are consistent
with the quantitative measures reported below are: (1)

an increase in the number of upward diagonal line
segments for eyes-closed (most easily observed by com-
paring the two vision conditions in the head-forward
condition); (2) more pronounced paling of the plot with
increasing distance from the main diagonal (drift, or
trend) for eyes-open than eyes-closed conditions with
the head to the side, while no such difference between
eyes-open and eyes-closed was observed with the head
facing forward; and (3) increased drift (trend) with the
eyes-open for the head-to-side relative to the head-for-
ward condition. The large degree of within-condition
variability in the plots, and the difficulty in determining
consistent qualitative differences across conditions,
highlight the need for the quantitative measures.

3.1. Time correlation and deterministic dynamics in
COP trajectories

%RECUR is a quantification of time correlation—it
quantifies the percentage of points which, over time,
return to the same local neighborhood in the recon-
structed phase space. ANOVA on %RECUR with vi-
sion (eyes-open versus eyes-closed) and head
orientation (facing forward or to the side) as indepen-
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Fig. 3. Sample recurrence plots of COP data from each of the 4 experimental conditions: (a) head straight, eyes-open; (b) head straight,
eyes-closed; (c) head-to-side, eyes-open; (d) head-to-side, eyes-closed. Input parameters were: embedding dimension = 10; time lag = 0.04 s; and

radius r = 10% of mean distance.
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dent factors revealed no reliable (e.g. p < 0.05) effects.
However, the interaction between vision and head ori-
entation was marginally significant (F(1,10) =4.54, p =
0.059). There was a tendency for %RECUR to increase
with eyes-open with the head facing the side, while with
the head facing forward there was no difference in
%RECUR as a function of vision.

One of the fundamental issues in the present paper
was to determine if COP series contained deterministic
structure. Deterministic dynamics in the COP time se-
ries were observed (overall mean %DET = 64.23). Ran-
dom shuffling of the data destroyed this structure,
suggesting that the finding reflects a true property of
COP dynamics (see below). Another issue examined
here was that of the effects of the availability of visual
information on COP dynamics. ANOVA on %DET
revealed a main effect of vision (F(1,10)=28.56, p <
0.05). %DET was higher with eyes-closed (mean of
66.49) than with eyes-open (mean of 61.96). Vision’s
effect on the deterministic structure of COP series was
largely a gross one—%DET increased when vision was
not available, but was not affected by the specifics of
optical structure (no effect of head position was
observed).

ANOVA on ratio (%DET/%RECUR) revealed the
main effect of vision as well (F(1,10) =8.16, p <0.05).
This essentially stems from the main effect observed for
%DET. The interaction between vision and head posi-
tion approached but did not reach significance
(F(1,10) = 3.9, p=0.077). The eyes-open versus eyes-
closed difference tended to be more pronounced in the
head-to-side condition.

3.2. Complexity of COP dynamics

Entropy is one quantification of the complexity of
deterministic dynamics observed in the data. For the
present data, ANOVA on entropy revealed a main
effect of vision (F(1,10) =5.29, p <0.05). The number
of bits of information required to describe the distribu-
tion of line lengths was higher for eyes-closed (mean of
1.99) than eyes-open (mean of 1.83). This result sug-
gests that deterministic COP dynamics were more com-
plex when the eyes are closed. However, since entropy
values are computed from the deterministic structure
(upward diagonal line segments) of the time series, and
since entropy values are not normalized with respect to
%DET, observed entropy values may have depended
upon the observed level of %DET. Thus, it is possible
that the main effect of vision observed for entropy was
a simple consequence of the corresponding main effect
observed for %DET. Simple linear regression revealed a
significant positive correlation between the two depen-
dent variables (#> =0.84, p <0.01). To control for this
correlation, multiple analysis of variance (MANOVA)
was computed with the same independent factors as
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Fig. 4. Interaction between vision and head orientation for trend (the
measure of COP nonstationarity). No differences in trend were
observed with eyes-closed or when looking straight ahead. Trend
increased in magnitude with eyes-open relative to eyes-closed when
looking to the side, and with eyes-open was greater in magnitude
when looking to the side relative to looking straight.

above and with %DET and entropy as dependent fac-
tors. Under MANOVA, the effect of vision on entropy
approached but did not reach significance (F(1,40)=
3.15, p=0.08).

3.3. COP nonstationarity

Trend reflects the paling of the recurrence plot with
increasing distance from the main diagonal, and is
computed as the line of best fit drawn for % RECUR as
a function of distance from the main diagonal. Trend is
expressed in units of %RECUR per 1000 data points.
ANOVA on trend revealed a significant interaction
between vision and head orientation (head facing for-
ward or to the side), F(1,10)=4.73, p=0.05. This
interaction is pictured in Fig. 4. Looking at the depth-
grating apparatus in the head-forward condition tended
to maximize radial expansions and contractions of
closed optical contours, while looking at the apparatus
in the head-to-side condition tended to maximize mo-
tion parallax. Planned comparisons revealed that trend
magnitude (all trend values were negatively signed) was
significantly lower for eyes-closed (mean of — 0.86)
than for eyes-open (mean of — 1.23) when the head
faced the side (F(1,10) =5.41, p < 0.05). There was no
effect of vision in the head-forward condition. Planned
comparisons also revealed that the difference between
eyes-open/head-forward (mean of —0.80) and eyes-
open/head-to-side (mean of — 1.23) was significant
(F(1,10) =7.33, p<0.05). COP nonstationarity in-
creased with the head to the side when the eyes were
open (i.e. in the experimental condition designed to
enhance motion parallax information).
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3.4. Surrogate data testing

The results of RQA for several randomly chosen
trials were compared with results obtained after shuffl-
ing the data point order for these trials. Random
shuffling effectively destroyed all structure revealed un-
der the input parameter values chosen (for example,
%DET dropped to around 0-5%). Furthermore, in
order to obtain comparable levels of % RECUR for the
randomly shuffled trials, » had to be set to nearly 50%
of the mean distance (compared with 10% for the intact
data). Even with such a high r, the %DET, entropy,
and trend measures were still dramatically lower for the
randomly shuffled data, and, furthermore, recurrence
plots showed the homogeneous typology and did not at
all resemble those for the intact data. Thus, it may be
concluded that the results obtained under the present
parameterization reflect true properties of the temporal
evolution of the COP, and that COP dynamics contain
a degree of deterministic structure. It must be empha-
sized, however, that slight changes in input parameters
did yield slight changes in output measures, and there-
fore the obtained RQA measures may not be inter-
preted as absolute quantities (e.g. it is fair to say that
COP signals contain deterministic structure, but it is
not fair to say that ‘postural sway is about 65%
deterministic’).

4. Discussion

In this paper, we provided a quantification of certain
dynamical properties of COP signals and showed how
these properties changed under manipulations of the
availability of vision and of the available optical struc-
ture. The present analysis suggests potentially impor-
tant features of postural fluctuations which may shed
light on underlying mechanisms and processes. First,
we observed that COP signals contain a degree of
deterministic structure (Y%oDET was =~ 60-65% under
the current parameterization for the intact data, and
~0-5% for the randomly shuffled data). This rein-
forces the view that postural sway is not purely ran-
dom, and contains subtle structure in the form of time
correlation information which may be extracted by
advanced analytic techniques [1,5,6,19]. This further
suggests the possibility that deterministic and stochastic
processes are perhaps braided together in the control of
posture, such that numerous and effectively random
small-scale fluctuations co-exist with deterministic dy-
namics (which may reflect perceptually-guided control).
One example of such a braiding is piecewise-determinis-
tic dynamics, which involves trajectories that are deter-
ministic but that also are influenced by noise near
singular points (i.e. noise can cause jumps to unique
trajectories) [18]. The existence of piecewise determin-
ism in COP dynamics remains to be explored.

Nonstationarity in COP data, as has been previously
noted [7,9-11], was also observed. Nonstationarity of
the COP is expected from a consideration of COP
trajectories as fractional Brownian motion [1,2,5,6,19].
COP nonstationarity may be a fundamental character-
istic of postural control, and may reflect motions about
a moving, rather than static, set-point or frame of
reference [42—-44]. Set-point dynamics would account
for global trends in COP motions, while local variabil-
ity would reflect deviations about the set point [44].
This scheme is generally consistent with the braiding of
deterministic and stochastic dynamics discussed above.
From this perspective, set-point dynamics are stochas-
tic, and local variability is due to stabilization with
respect to the set point via closed-loop, deterministic
(damped nonlinear oscillator) dynamics [42]. Nonsta-
tionarity might also be an intrinsic feature of dynamic
stabilization of an unstable state, such as maintaining
the upright posture or balancing an inverted pendulum
through motions of the hand. Treffner and Kelso [45]
have noted that one strategy in balancing an inverted
pendulum is a ‘running’ strategy, wherein relatively
large though brief displacements result in an overall
change in level in the time series. This strategy is one of
going with, rather than resisting, the dynamics of the
system (e.g. not countering a brief tendency to lean)
until a constraint (such as a stability boundary) threat-
ens task performance, at which time the run must be
countered through appropriate muscular action. If non-
stationarity stemming from the sources postulated
above is a typical feature of postural control, then
perhaps one clinically-oriented use of RQA would be to
assess if and how COP nonstationarity changes with
disease or aging.

An increase in deterministic structure when the eyes
were closed was observed, in accordance with the above
interpretation of results from stabilogram-diffusion
analysis. There was also a tendency for this structure to
increase in complexity when the eyes were closed. An
increase in deterministic structuring of postural sway in
the absence of vision is perhaps a counterintuitive idea
if only the common finding of an increase in sway
variability or amplitude is considered [24-26], but is
consistent with other results [2,5,6,19]. This may reflect
a process of increased exploratory, information-gener-
ating behavior with the eyes-closed, if, as is commonly
held, postural control is in some sense made easier
when vision is available (but see Stoffregen and Smart
[46]). An alternative interpretation is that increased
determinism with eyes-closed reflects a conservative
strategy adopted by participants—a strategy of increas-
ing the controllability of sway to compensate for de-
creased perceptual sensitivity associated with the
absence of vision. The notion of a conservative strategy
would have to be reconciled, however, with the increase
in variability observed with eyes-closed (and observed
by Riley et al. [19] for these data, in particular).
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We also observed a change in the nonstationary
properties of postural sway as a result of the head
orientation manipulation. With the head-forward, AP
sway results in radial expansions and dilations of closed
optical contours, while ML sway results in motion
parallax. With the head facing the side, AP and ML
body sway (with sway defined with respect to trunk
orientation, not head orientation) produce the reverse
effects. Given that AP sway is usually of higher magni-
tude than ML sway (due to greater biomechanical
range of motion in the AP direction; increased sway
variability in the AP direction was also empirically
demonstrated in these data by Riley et al. [19]), the
effect of turning the head to the side is to increase
motion parallax relative to radial transformations. The
result of this optical manipulation (effected by changing
the orientation of the head with respect to the layout of
environmental surfaces) was increased trend for eyes-
open relative to eyes-closed that was observed only
when the head faced the side. When the head faced
forward, there was no change in trend as a function of
eyes-open versus eyes-closed. Furthermore, the RQA
trend measure was higher for eyes-open when the head
faced the side than when the head faced forward. These
results suggest that increased motion parallax informa-
tion resulted in an increase in COP nonstationarity. In
accordance with the above interpretation of COP non-
stationarity, this could mean that when motion parallax
information is heightened, the running strategy—which
would tend to momentarily further heighten parallax
information as the body moves in one direction for a
brief, though sustained, period—becomes more promi-
nent (i.e. increased drift in the dynamic set point is
observed). Such a possibility would reflect the postural
control system’s exploitation of enhanced visual
information.

The findings regarding increased COP nonstationar-
ity highlight the importance of being able to quantify
nonstationarity. The stabilogram-diffusion technique
used by Riley et al. [19] only quantified the degree of
stochastic activity of the COP and the correlation struc-
ture of COP signals over short and long time scales.
With respect to the head orientation/optical structure
manipulation, the effect that Riley et al. observed was
that when the head faced the side, negative correlations
between data points separated by large time intervals
decreased in strength for AP sway. Such a decrease in
negative correlations indicates that when the head faced
the side the tendency of the COP to reverse direction
decreased with the eyes-open relative to eyes-closed.
This result is interpretable with respect to the present
finding of an increase in nonstationarity (if the COP
reverses direction less often, COP signals will tend to
drift), but without the present finding of an increase in
the RQA trend measure, such an interpretation of Riley
et al.’s data is not as readily apparent.

5. Conclusions

These findings regarding vision and optical structure
suggest that RQA may be a valuable tool for the
analysis of COP data. An appealing feature of RQA is
that it may be used to quantify the extent and nature of
observed deterministic structure in a series. Further-
more, RQA can also quantify nonstationarity, and the
attained quantification may then be compared across
experimental conditions. Future applications of RQA
could include the computation of RQA measures over
time for measured COP signals (e.g. the moving win-
dow analysis mentioned above) in order to determine if
underlying changes in physiological state occur over the
course of experimental trials. For example, the presence
of fatigue could be examined in prolonged standing.
Webber et al. [47] have examined (using RQA) the
signature of fatigue in EMG signals taken from the
biceps brachii of human participants. In this case,
fatigue was induced by adding heavy loads during the
task of maintaining a constant joint posture for a
prolonged period of time. An analysis of postural mo-
tions could easily be compared to these EMG data.
Other applications could include the effects of aging or
of disease on postural fluctuations. With respect to the
latter application, a common understanding of disease,
from a dynamical perspective, is as increasingly stereo-
typed or regular (e.g. periodic) behavior in a system
whose healthy function is not characterized by such
regularity [48]. This hypothesis—and the issue of COP
nonstationarity and disease, as discussed above—could
be assessed using RQA of COP signals in the context of
various vestibular, skeletal, or neuromuscular disorders
in which postural control and stability are jeopardized.
Furthermore, RQA might also be used, as an alterna-
tive to stabilogram-diffusion analysis, if strong periodic
components in the data (which might arise, for exam-
ple, when participants are exposed to a periodic visual
display) render parameter estimates from the stabilo-
gram-diffusion plot unreliable.

As a final note, the initial difficulties associated with
choosing RQA input parameters are re-emphasized.
Deciding upon the correct parameterization requires
careful examination of the data under a variety of
parameter settings. Results obtained under each
parameterization must be compared against randomly
shuffled data in order to confirm that they reflect actual
processes revealed by the time evolution of the series in
question rather than some form of chance occurrence
or measurement error. It must also be re-emphasized
that obtained RQA measures cannot be considered as
absolute; they must be taken with respect to shuffled
data and with respect to levels of a manipulated vari-
able (e.g. degrees of change in RQA measures as a
function of experimental conditions). With these
caveats in mind, RQA may prove to be a valuable
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means of analyzing COP data as well as data from
other biological movement contexts.
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