Chapter 8
On the Control of Unstable Objects:
The Dynamics of Human Stick Balancing

Ramesh Balasubramaniam

Introduction

Objects that we control and interact with are often unstable. Riding a bicycle, bal-
ancing a tray of food, maintaining the oscillations of a hula-hoop, and even standing
upright are exemplary tasks that require the control of an unstable object. Although
it is difficult to characterize the physics of complex object interactions, we are adept
at learning and performing these tasks in everyday life. Unstable objects require
carefully assembled control mechanisms because, by definition, the object must be
stabilized through the interaction between the human control and the intrinsic object
dynamics. Additionally, such tasks demand extremely precise control because error
can elicit abrupt and irrevocable changes in the performance (Balasubramaniam and
Turvey 2004; Cluff et al. 2008).

Although much is known about human motor control and object manipulation
in predictable systems (when the mapping between actions and their consequences
is straightforward), much less is understood about unstable object control. This is
largely because the dominant research focus has been on characterizing the task and
context-dependent attributes of firmly grasped, rigid object control (Imamizu et al.
2003; Milner et al. 20006). Although an extensive literature has focused on adaptation
to novel mechanical loads, few studies have considered how we learn to control
unstable objects. As a result, there are a number of important questions that remain
in motor control research: What strategies are used to control unstable objects and
how are these control mechanisms learned? Are common control processes shared
between interacting motor systems? Do these control mechanisms involve predictive
internal forward models?

In this review article, I use a stick-balancing task as a paradigmatic example to
investigate control mechanisms and skill acquisition in relation to unstable object
control. The stick-balancing task imposes a complex control problem that involves
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maintaining an inverted pendulum in dynamic equilibrium at the finger tip. First, the
number of degrees of freedom that needs to be controlled far exceeds the dimensions
of the task. Although the stick moves freely in three spatial dimensions, a large
number of body segments have been coordinated in order to keep the stick upright
and stable. Second, and more important, as the stick is allowed to pivot freely, the
effect of forces applied at the fingertip depends on the angular state of the stick (i.e.,
position and velocity). Small errors in the estimation and detection of state-specific
information could translate to a serious loss of performance stability.

The inverted pendulum control problem has been the object of study in control
systems engineering and human motor control (Narendra and Annaswamy 1986).
Previous studies have generated a number of important insights on the dynamical
and neural control processes involved (Treffner and Kelso 1999; Foo et al. 2000;
Mah and Mussa-Ivaldi 2003a, b; Cabrera et al. 2006), which fall under the general
classification of two theories: internal model and intermittent feedback control. In the
following section, I review the two theoretical frameworks, as they pertain to stick
balancing in detail, before describing recent work from our laboratory on this topic.

Issues in Studying Unstable Object Dynamics

Internal Forward Model-Based Control

A large body of evidence in human reaching tasks suggests that humans develop
internal models to produce the systematic forces required to deal with force-field
perturbations (Lackner and DiZio 1994; Shadmehr and Mussa-Ivaldi 1994. Follow-
ing the seminal work of Wolpert et al. (1995), an important theoretical development is
that the brain acquires and uses an internal model that encodes the physical properties
of our limbs (Singh and Scott 2003; Kurtzer et al. 2008), environment, and manip-
ulated objects. In particular, object manipulation tasks (Ahmed et al. 2008) have
suggested the existence of an internal model that captures the relationship between
forces applied to an object and its ensuing movement. Further, Mussa-Ivaldi and
colleagues have shown that the relationship between applied force and motion can
be learned in the absence of upper limb movement (Mah and Mussa-Ivaldi 2003a).
Once such a model is acquired, it can be generalized to novel limb configurations,
but such a model does not transfer to objects with different dynamics (Mah and
Mussa-Ivaldi 2003b). The general conclusion from these studies is that the control
of objects requires knowledge of the physical properties of the object. In the context
of stick balancing, these results imply that the successful control of an unstable stick
requires object-specific knowledge which is acquired and maintained by the upper
limb movements, the sensory consequences of these movements, and the resulting
stick motion.

A question of interest in this review is: are internal models required to balance
an inverted pendulum? The internal model approach would predict that the stick-
balancing task could be performed by predicting sensory information about the
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inverted pendulum’s angular position and velocity. In much of the recent work on
internal models in motor control, a major theoretical point has been that sensory
signals that provide state information about the stick (position and velocity) are in-
fluenced by noise (for review, see Faisal et al. 2008) and time delay. In the wake of
sensory uncertainty and time delay, it has been argued that internal models can be
used to estimate the state of the body, environment, and manipulated objects. Such
models are acquired and maintained by combining efference copies of motor com-
mands and sensory feedback of the movements to predict the sensory consequences
of movements (Wolpert et al. 1998). State estimates are generated using principles to
minimize uncertainty via a Kalman filter (Kalman 1960) that uses internal feedback
based on the motor command and sensory feedback in conjunction with a model of
the motor system.

In a recent study, Mehta and Schaal (2002) examined internal models in the
visuomotor control of stick balancing. They found that subjects could successfully
balance a stick even in the absence of visual information (in blank-out trials lasting
up to 600 ms) and in the absence of force feedback about the stick’s state. They
concluded that the central nervous system (CNS) uses a forward model to control
the stick, but were unable to show the form of model-based control used in stick
balancing (Mehta and Schaal 2002). It is possible that this was due to the limitations
of a Kalman filter based state estimation mechanism for handling the type of statistical
distributions seen in stick balancing (Cluff and Balasubramaniam 2009). Although
I do not take up the issue of state estimation directly in this review, I highlight a
few caveats about using internal models on the basis of Kalman filter based observer
models.

Intermittency and Dynamical Systems Accounts of Stick Balancing

An alternative approach to the internal model account has been developed by Milton
et al. (2009). According to these authors, continuous balance control does not ad-
equately describe the behavioral strategies used to control unstable objects. They
argue that the difficulty of controlling an inverted pendulum arises due to limita-
tions in simultaneously processing noisy time-delayed feedback while specifying
controlled motor responses (Milton et al. 2009). They have contested the viability of
continuous model-based control following experimental evidence showing that in-
termittent rather than continuous control strategies are used in stick-balancing tasks
in the context of feedback uncertainty and delay (Loram et al. 2006; Milton et al.
2009; Gawthrop et al. 2011).

Inrecent years, Cabrera and Milton (2002, 2004a) have shown that stick balancing
shows characteristics of intermittent control. They observed that stick displacements
exhibit alternating small and large amplitude excursions with frequency. Two im-
portant power-law relationships can be seen here. First, the power spectrum of stick
fluctuations follows a —1/2 power law. When the laminar phases were analyzed,
the distribution revealed a —3/2 power law. Cabrera and Milton (2002) observed
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that corrective stick movements were performed at all time scales; the modal ones
occurring at time intervals that are shorter than sensorimotor delays in human volun-
tary movement (~100 ms). Evidence for intermittent control mechanisms have since
been reported for the manual control of unstable virtual load (Loram et al. 2009).
Further, Gawthrop et al. 2011, have successfully modeled the intermittent control
strategy employing ballistic control forces that operate when the angular deviations
of a stick exceed specific thresholds. Such a discontinuous control mechanism re-
flects the usage of short time scale, stochastic forcing of objects when they cross
set-point stability boundaries (Cabrera and Milton 2002, 2004a).

It is of interest to note that stick-balancing time is inversely related to the weight
and height of the stick. Lighter and shorter sticks are more difficult to control. Periodic
vibrations, even shaking an object with the other hand while balancing a stick, help
to stabilize performance. These observations suggest that intermittent control could
be related to feedback uncertainty, time delay, and interactions between the two.
However, the adaptive nature of intermittent control has yet not been explored. It is
likely that a combination of the stochastic processes underlying basic hand position
and feedback control processes generate intermittency in stick-balancing control
(Wolpert et al. 1992; Treftner and Kelso 1999). In this review, I focus on quantifying
such intermittent dynamics in stick balancing and accompanying posture control
mechanisms.

Task-Specific Control of Upright Posture

It is important to consider the context and task environment in stick balancing. The
task of balancing the stick takes place against an almost constant backdrop of the
control of upright stance. In the following, I describe recent developments in standing
balance control that have contributed to our understanding of stick balancing and the
control of unstable objects in general.

Upright posture is stabilized by activity in distributed muscle groups that is scaled
to the magnitude and the direction of self-generated and environmental forces (Ting
and Macpherson 2005). Despite the complexity of the neural mechanisms involved in
postural control, the mechanical basis of standing balance is to maintain (the vertical
projection of) the center of mass within a support surface. Posture control is typically
studied using time-varying properties of the body’s center of pressure (COP). To the
extent this equilibrium requirement is satisfied, the postural system appears to be
recruited to facilitate goal-directed behavior. An emerging argument, pioneered by
Stoffregen and colleagues, is that the diversity of voluntary control is inseparable
from the postural mechanisms that support behavior (Riccio and Stoffregen 1988;
Marin et al. 1999; Stoffregen et al. 1999; Stoffregen et al. 2000). Recent studies have
shown that postural sway helps to facilitate the performance of tasks that are super-
ordinate to the task of maintaining upright balance. This has been demonstrated in
the context of light touch (Riley et al. 1999) and precision aiming (Balasubramaniam
et al. 2000).
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The analysis of postural fluctuations has revealed the interplay between stochas-
tic and closed-loop feedback correction processes, as seen in the multiscale analysis
of stick balancing. Postural fluctuations have been modeled widely using a dual
timescale model (Collins and DeLuca 1994, 1995; Zatsiorsky and Duarte 1999).
However, standing balance is flexible enough to be entrained by an external stimu-
lus (Marin et al. 1999) and robust in the context of visual feedback delays (Boulet
et al. 2010). Other studies have revealed task- and context-specific control of posture
(Jeka et al. 2000; Kiemel et al. 2002; Peterka and Loughlin 2004). Other findings,
however, imply an intimate functional link between posture and upper limb control
(Ahmed and Wolpert 2009) that extends beyond the instability of standing balance
(Balasubramaniam and Wing 2002), suggesting that a common predictive mecha-
nism might underlie the control of both systems (Flanagan and Wing 1997). In this
review, I will look at the interaction between the postural system and stick-balancing
dynamics. In particular, I will examine how task parameters influence the control
system underlying the two.

Perspectives in Motor Learning

Stick balancing does not come easy. Learning to balance an unstable object re-
quires mastery of the degrees of freedom of the body and an understanding of the
physical dynamics of the object. In this section, I will review how scientists have
approached the issue of skill acquisition in recent years. The motor learning literature
may be divided into (at least) two distinct approaches: sensorimotor adaptation and
coordination dynamics.

Sensorimotor adaptation paradigms have been used to study how motor commands
are modified in the wake of changing environments (Lackner and DiZio 1994; Shad-
mehr and Mussa-Ivaldi 1994). In this approach, learning has been argued to reflect an
optimal parameter estimation process that serves to reduce error. Anticipatory change
in reaching kinematics has been documented extensively in force-field adaptation
studies, leading to important discoveries about trial-to-trial learning, consolidation,
and interference. Imaging studies have revealed that the cerebellum (Imamizu et al.
2003) and basal ganglia (Seidler et al. 2001) are strongly implicated in sensorimotor
adaptation and the modification of motor commands in changing environments. Al-
though the sensorimotor adaptation paradigms have contributed to our understanding
of learning movement trajectories, there have been few studies that have investigated
the role of the interaction between the multielement structure of the body (and its
many degrees of freedom) and various subsystems as a function of learning.

The coordination dynamics perspective offers a powerful framework to investigate
the organization, stability, and control of voluntary movement. The largest successes
of this perspective have been in quantifying the acquisition of bimanual coordina-
tion patterns. In coordination dynamics, the focus of research has been on learning
induced changes in the spatio-temporal properties of a system, characterized by an
order parameter (Zanone and Kelso 1992). In this approach, changes in an abstract



154 R. Balasubramaniam

parameter are believed to reflect dynamical events unfolding at multiple time scales
(such as relative phase between two limbs). Learning has been described by the evo-
lution of the topological properties that characterize body segment relationships and
systematic changes in the recruitment and patterning of multiple degrees of freedom
(Vereijken et al. 1992).

Given the number of degrees of freedom that have to be coordinated in complex
motor learning situations, interactions between motor subsystems have also been a
key part in dynamical approaches to motor learning. Following the seminal work of
Bernstein (1967), Newell et al. (2001) have suggested that motor learning is instan-
tiated by the evolving coordination of interacting motor subsystems. Their model
distinguishes between three hierarchical levels of the motor system ranging from (1)
individual effectors that operate and evolve within effector systems (e.g., individual
muscles, segments, or joints) to (2) coordinative relationships between motor sub-
systems (e.g., posture and upper limb movement patterns) that interact to produce
and stabilize (3) outcome performance. Newell et al. (2001) have proposed that such
specialized motor subsystems are organized hierarchically. Such subsystems are as-
sembled into functional units that support outcome performance. In this review, I
will employ the ideas that have evolved from the motor learning literature, specifi-
cally related to the spatio-temporal properties and control of degrees of freedom, to
describe skill acquisition in stick balancing.

Issues at Hand for Stick Balancing

It is, thus, evident that task- and context-specific control mechanisms are common
features of posture and upper limb control. I posit that object manipulation skills in
the task of balancing an unstable object, like a stick at the fingertip, are established
through these common learning and control mechanisms governing these subsys-
tems. I ask the following four questions. (1) How do we learn to control unstable
objects? (2) Are stick-balancing dynamics intermittent and if so how can we quantify
this intermittency? (3) Are distinct motor systems, such as the control of individual
joints, posture, and the upper limb, linked through common learning and control
processes? (4) What is the role of higher cognitive and attentional processes in the
acquisition and maintenance of the stick-balancing skill?

Spatio-temporal Dynamics of Stick Balancing

The objective of our first study (Cluff and Balasubramaniam 2009) was to determine
if the power-law scaling in stick balancing (Cabrera and Milton 2004a, b), described
in the section above, is dependent on motor learning.

In order to test this idea, participants balanced a wooden dowel with length 62 cm,
diameter 0.635 cm, and mass 50 g in two experimental conditions: sitting and stand-
ing. Sitting trials were performed with subjects seated comfortably in a chair at the
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subjects’ preferred seat height. The subjects were required to balance the pole with
their back remaining in contact with the seat. In the standing condition, subjects
performed pole balancing with their feet approximately shoulder-width apart, but
were able to move their upper body while maintaining a stationary stance.

Participants learned to balance a small cylindrical stick on their fingertip over a
2-week period. Data collection was performed on the first day, followed by sub-
sequent data collection every fourth day. The subjects performed 30 min of daily
practice between data collection sessions (15 min per condition), which was dis-
tributed between conditions according to their preference. We avoided confounding
learning effects by counterbalancing the order of conditions across subjects. Motion
capture was performed with eight VICON MX-40 4+ infrared cameras sampled at
500 Hz (Denver, CO, USA). We tracked pole motion in three-dimensions using two
markers affixed to the top and bottom on the pole.

We computed the Euclidean finger tip speed s(¢) and the detrended speed, As. For
the probability of a given step size, we computed P(As, At) by plotting histograms
with bin size set to 1 mm/s. To determine whether the probability of a given step
size was influenced by the time between observations, At, we decimated As(¢) on a
logarithmic scale by factors 1-1,000. We plotted the probability of return (i.e., the
probability of zero change in fingertip speed between observations), P(0, Af), as a
function of Atz. The power-law exponent o« was computed by regressing P(0, Ar)
onto At on a log-log scale. Figure 8.1a shows the distribution of P(As, At) for the
sitting and the standing conditions. The purposes of this study were two-fold: first,
to determine whether the decay exponent for the probability of a given step size, «,
changed with learning, and second, to determine whether « varied in a sitting versus
standing condition.

As subjects learned the mean balancing time increased, unequivocally suggesting
that they were getting better at the task. Figure 8.1b shows the change in the value of
the power-law exponent across sessions of learning. A careful look at Fig. 8.1 reveals
that the values of @ range from O to 2 (i.e., 0 < o < 2), suggesting that stick-balancing
dynamics are Lévy-distributed, a finding previously reported by Milton et al. (2004).
The Lévy process can be characterized as an unbounded and unconstrained random
walk. The unbounded, asymptotic character of the Lévy distribution results in an
infinitely variant process, resulting in the absence of the first and second statistical
moments. Figure 8.1 also reveals that the distribution broadens with learning, this
corresponds to a smaller decay in the probability for large step sizes. Behaviorally,
this is manifested as tolerance to stochastic processes: the participant becomes more
tolerant to large changes in fingertip speed with increasing task proficiency.

Our results demonstrate that motor learning results in increased tolerance for large
stick displacements. The decay exponent o was influenced by learning, becoming
significantly smaller with experience and resulting in less severe decay in the proba-
bility for a given velocity step size, P(As, At). Moreover, the decay exponent « for
P(As, Ar) was greater in a sitting versus standing condition. Our results show con-
spicuously that both decay exponents and truncation change with learning, resulting
in an increased tolerance to large fingertip excursions in pole balancing.
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Fig. 8.1 Top-panel: Session 1; blue: session 2; green: session 3. Solid black line represents theoret-
ical Lévy distribution with a @ = 0.95 and scale parameter y = 0.03, b « = 0.98 and scale parameter
y =0.025. The overlaid theoretical Lévy distribution demonstrates both decay exponent « and trun-
cation change with learning in the standing condition. Bottom panel: P(0, At) follows a power-law
distribution for Az =0.002 to 2 s, in the sitting condition. (Reprinted with permission from Cluff
et al. 2009, Public Library of Science)

Our results that stick-balancing trajectories (probability of finger tip speed change
over time interval) are Lévy-distributed, raises important concerns about hypothe-
sized control mechanisms that are based on predictive internal models that employ
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Kalman filters (Mehta and Schaal 2002). Lévy processes are indicative of nonpre-
dictive search processes or foraging. Morover, a conventional Kalman filter assumes
additive Gaussian processes and measurement noise. It is unlikely that a technique
using conventional Kalman filters can be successfully used to model systems with
multiplicative noise that yields power-law distributed variables.

In summary, this study has demonstrated that learning, which reflects changes
between the dynamics of passive and predictive mechanisms, can be captured
by changes in ensemble statistical distributions that capture the spatio-temporal
properties in stick balancing.

Quantifying the Intermittency in Stick-Balancing Dynamics

In the previous section, I reported on the nature of Lévy distributions and power-law
scaling seen in stick balancing. The question that remains is what kind of control
mechanisms are implicated in seeing such a distribution. One interesting possibility
that this observation raises is the presence of intermittent corrections at multiple
time scales. Previous work by Milton et al. (2004) has shown that power-law scal-
ing was also evident in the laminar phases (time intervals) for successive corrective
movements, demonstrating that corrective movements were intermittent. In confir-
mation of intermittent control, behavioral data demonstrated that 98 % of corrective
movements were shorter than our sensory processing delays (~100ms). Numer-
ical analyses have since demonstrated that balance is facilitated in time-delayed
stochastic systems, provided the system is tuned near a stability boundary. In this
case, control could result from stochastic processes that force the fingertip trajectory
back and forth across stability boundaries. It is often argued that intermittent control
might be favored to continuous estimation in stochastic, time-delayed systems as the
computational burden incurred by the CNS is minimized (Milton et al. 2008).

The first goal of our next study (Cluff et al. 2009) was to perform a detailed in-
vestigation of the Lévy-distributed dynamics of stick-balancing fingertip trajectories
and test for the presence of intermittent control mechanisms. To investigate this, we
applied recurrence quantification analysis (RQA) to the fingertip displacement time
series recorded during stick balancing (Webber and Zbilut 1992). An objective of
this study was to quantify the intermittency seen in stick balancing and the changes
accompanying learning. Intermittent systems are characterized by two distinct states,
“off”: a period over which dynamical variables are approximately constant and “on’:
where sudden, intermittent bursting of activity can be seen. In such systems, when
the dynamical variable remains within a certain threshold bound it is quiescent. When
the threshold bound is crossed, the system transitions from the “off” to “on” state,
where a burst of activity might be seen.

The earlier section summarized the work that showed that individuals became
tolerant of large amplitude fingertip displacements with pole balancing experience.
This tolerance reflects an increased robustness to perturbations, a form of dynamical
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stability we sought to quantify. In addition, RQA provides a method for quanti-
fying change in the degree of relative determinism versus stochasticity (%DET),
robustness to perturbations (Lmax), nonstationarity (TREND) all embedded in
pole-balancing fingertip dynamics—a characteristic of the dynamics that might be ex-
pected to change over the course of learning (cf. Riley et al. 1999; Balasubramaniam
et al. 2000; Balasubramaniam and Turvey 2004). Finally, RQA provides a set of
measures capable of indexing intermittency in the control enacted in pole balancing,
including %LAM, vmax, and TTIME.

Recall that in the earlier section, we reported significant differences in learning
the stick-balancing task in the sitting and the standing conditions (Cluff and Bala-
subramaniam 2009). A key objective of this study was to assess the nature of the
difference between the sitting and standing condition. We reasoned that the avail-
ability of greater number of biomechanical degrees of freedom in standing greatly
contributed to the better acquisition of the stick-balancing skill in that condition.
Earlier work has shown that learning can change the orderly recruitment of degrees
of freedom into organized coordinative structures, in a manner that would facilitate
performance (Bernstein 1967; Vereijken et al. 1992).

As with the previous study reported in the section, Spatio-temporal Dynamics of
Stick Balancing, subjects learned to balance a stick in sitting and standing condi-
tions. We analyzed the stick-balancing displacement time-series data using RQA.
Results revealed a number of changes in the dynamics of fingertip displacements
that occurred over the course of learning. RQA also revealed a number of effects
related to the availability of biomechanical degrees of freedom for task performance.
%REC is a measure of temporal correlation. It reflects the tendency for points that
over time return to the same local neighborhood of the reconstructed phase space.
%REC decreased progressively with learning, suggesting that temporal correlation
in fingertip displacement series decreased with experience. Therefore, as participants
became more experienced in balancing, the trajectories in the reconstructed phase
space were less likely to repeat. Figure 8.2 summarizes the findings on recurrence
rate as a function of learning for the sitting and the standing conditions.

Our results also demonstrated that Laminarity index (%LAM), and trapping time
(TTIME,) which index intermittency in the dynamics, were all larger in the standing
relative to sitting condition. Collectively, these results suggest that the underlying
control was more intermittent for the standing condition. In other words, the sys-
tem’s propensity for intermittency was observed in relatively longer phases whereby
the fingertip position was approximately constant. These results are consistent with
a control mechanism that capitalizes on passive motor control dynamics and cor-
rects for pole excursions only when these displacements threaten stability. Such a
mechanism is often termed “drift and correct,” following the work of Milton et al.
(2004).

In summary, we have shown that learning resulted in greater stability of stick
movement trajectories (resistance to perturbation); although they showed a greater
tendency to return to the same areas of the reconstructed phase space. The avail-
ability of greater degrees of freedom in standing resulted in intermittent dynamics
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Fig. 8.2 %REC was moderated by learning and a condition effect. a %REC was dependent on a
learning effect, decreasing progressively from the first through third experimental session. b %REC
was dependent on a condition effect, with %REC greater in the sitting relative to standing condition,
which reveals greater tendency for the dynamic to visit local neighborhoods in phase space in this
condition. (Reprinted with permission from Cluff et al. 2009 @ Elsevier)

at the fingertip and suggested the role of the recruited “coordinative structures” in
minimizing the computational burden on the CNS.

Task-Specific Coupling Between Posture and Hand

As mentioned in an earlier section, stick balancing takes place on top of the usual
balancing and cognitive demands placed on the standing performer. Our results have
also shown overwhelmingly that standing actively contributes to stick-balancing
expertise and the intermittent control mechanisms that are characteristic of learned
performance. Thus, a natural question to study would be: what are the interactions
between the body’s COP and stick trajectories when an actor learns the task of stick
balancing. Cluff et al. (2011) examined this relationship and coupling between hand
and postural displacements during stick balancing.

In this study, participants learned to balance a cylindrical wooden stick on their
index finger while standing in an upright posture. Learning was quantified over four
experimental sessions. Data collection sessions took place every fifth day and were
about 90 min in duration. Subjects performed 30 min of daily practice between ex-
perimental sessions. RQA analyses were performed separately on hand and postural
displacements. Cross-RQA (CRQA) was performed to study the co-time evolution
and relationship between postural and hand displacements as subjects learned the
task. We hypothesized, following the work of Newell et al. (2001) that we reviewed
earlier, that learning would involve a reorganization of postural control to support
stick performance.

In line with our previous studies, finger trajectories became more discontinuous
with learning. But we also noted similar changes in the COP time series, suggesting
that postural sway was indeed facilitating the performance of the “suprapostural”
task of stick balancing. As summarized in an earlier section, this is consistent with
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Fig. 8.3 Coupling strength and dynamical properties of the finger—-COP (F-COP) interaction.
a Recurrence rate (RR) of coupled F-COP trajectories by session. An increase in RRg_cop reflects
the tendency for collective control over finger and COP displacements. b LAMg_cop measures
transitions between coupled and uncoupled F-COP trajectories. Greater LAMg_cop reflects an in-
crease in the density of coupled F-COP trajectory segments. ¢ Average length of coupled F~COP
trajectories by session (TTg_cop; unit: ms). Error bars are the within-subjects standard error of the
mean (SEM). *P < 0.05, **P < 0.01, ***P < (0.001. (Reprinted with permission from Cluff et al.
2011 @ Springer)

previous work suggesting a facilitatory role for postural fluctuations (Balasubra-
maniam et al. 2000; Stoffregen et al. 1999, 2000). As seen in Fig. 8.3, we also
demonstrated that the coupling strength between posture and hand displacement un-
derwent substantial changes as a function of learning. Specifically, CRQA revealed
that cross-recurrence, laminarity, and trapping time systematically changed with
learning. Learning progressively stabilized the coupling between the upper limb and
postural subsystems. In the following, we make the case that this progressive change
in coupling emerged from the development of a hierarchical control system that can
seamlessly switch between controlling the upper limb and postural systems (Newell
etal. 2001).

According to the seminal motor learning model of Newell et al. (2001), individ-
ual subsystems become coupled to structural coordinative relationships to support
performance. In this experiment, we showed the emergence of such coupling with
learning. The improvement in performance can be attributed to two processes (1) at
the level of individual subsystems (seen in learning sessions 1 and 2): decreases in
regularity and discontinuity and (2) the lengthened coupling of the finger and COP
displacements in the third learning session. Interpreting these results in the context
of the model of Newell et al., one could argue that early learning changed the or-
ganization of individual subsystems and later learning influenced their coordinative
relationship.

The increased coordination between the postural and finger subsystems could be
due to either anticipatory (Flanagan and Wing 1997) or reactive mechanisms. We
make the case that COP and finger displacement were controlled by a hierarchi-
cal system that was able to switch intermittently between individual and collective
control of the subsystems in question. Future work should carefully examine how
the individual biomechanical degrees of freedom of the hand and the postural sys-
tem come together in a constrained way to achieve this functional coupling. We are
presently engaged in research that would enable a comparison between end-effector
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analyses (such as the ones presented here) and the contribution of the many redun-
dant degrees of freedom at the disposal of the CNS to the statistical properties of the
end effectors during unstable object manipulation.

Attention and Task Performance

In the previous sections, I have looked at the changing landscape of control
mechanisms that accompany motor learning in stick balancing. We have also seen
in the preceding section about the nature of interactions between posture and hand
displacements that reveal a hierarchical control structure. In recent years, several
studies contributed to a generalized theory of attentional influences on motor
performance (see, Wulf and Prinz 2001, for review). Other work has also examined
the function of attention as being a deterrent to successful task performance
(Beilock et al. 2002; Beilock et al. 2008; Beilock et al. 2008). Stemming from
this research, the “constrained action” theory proposes that attention devoted to
movement execution interrupts the automaticity of performance (Wulf et al. 2001).
Performance, defined as the statistical stability or variability of motor execution, is
dependent on whether attention is devoted to motor execution or outcome. As a test
of the constrained action theory, Cluff et al. (2010), asked if specific task instructions
would influence the way skilled practitioners carry out the stick-balancing task.

We employed six experimental conditions. (1) Posture baseline condition (P):
quiet standing task for 30 s with no explicit instructions. (2) Posture-cognitive dual-
task (P-CDT) condition: subjects performed upright standing while performing a
silent, serial arithmetic task. (3) Posture-stick balancing (P-SB): subjects balanced
the stick in upright stance without specific attentional instructions. (4) P-SB external
focus condition (P-SBEXT): subjects were instructed to “minimize deviations of
the stick from the vertical.” (5) P-SB internal focus condition (P-SBINT): subjects
were instructed to “focus on minimizing hand and finger movement.” (6) P-SB-CDT:
subjects performed a CDT while standing and balancing a stick. The methods used
in this experiment are reported from Cluff et al. (2010).

We hypothesized that both postural and suprapostural components of the stick-
balancing task would be stabilized by a task-irrelevant external focus of attention
(P-SB-CDT). We predicted that an internal focus of attention would compromise
dynamical stability in the stick-balancing task, resulting in variable COP and
FINGER trajectories. In confirmation of the hypothesis, FINGER and COP trajecto-
ries were least variable when participants partitioned attentional resources between
stick-balancing and cognitive task components, corresponding to an external, task-
irrelevant focus (P-SB-CDT). In contrast, COP and FINGER displacements were
least stable when the focus of attention was internal. Performance stability for the ex-
ternal, task-relevant condition was similar to control performance (P-SB). Figure 8.4
summarizes this effect.

It is interesting to note that our results did not directly support the constrained
action theory proposed by Wulf et al. (2001). According to this theory, performance
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RMS COP (mm)

RMS FINGER (mm)

P-SB P-SBEXT P-SBINT P-SB-CDT P-5B P-SBEXT P-SBINT P-5B-CDT

Condition

Fig. 8.4 The statistical stability of postural and suprapostural performance is dependent on focus of
attention for balancing. COP and fingertip trajectories were least variable when stick balancing was
performed with a concomitant cognitive load. a RMS COP and b RMS FINGER were reduced in
the P-SB-CDT. Of particular interest was the stabilizing effect of cognitive load for stick-balancing
performance. Finger trajectories were approximately half as variable in P-SB-CDT relative to other
conditions. Error bars represent + 1 SEM. (Reprinted with permission from Cluff et al. 2010 @
Springer)

variability is decreased, accompanied by increased frequency components when the
attentional focus is external (minimizing movement of the stick). And conversely,
performance variability is increased when attentional focus is internal (focus on min-
imizing finger displacements) with a slower frequency component dominating. Our
data did not confirm these predictions. However, we showed that greatest reduction in
performance variability was seen when performing a CDT, thus, taking the attentional
focus away from the task of standing upright and concurrently balancing the stick.

It is important to underscore that previous studies of attentional focus did not deal
with situations where there was an indistinct perceptual boundary between the body
and the object being controlled. As originally noted by Gibson and later by investi-
gators that study human and primate tool-use, handheld objects are often perceived
as extensions of the body itself. This phenomenon, also known as exproprioception,
needs to be considered in the context of the constrained action theory, proposed by
Waulf and colleagues. Our results also showed that focusing on activity irrelevant
to the physical task at hand (performing the concurrent cognitive task) was most
beneficial to performance.

Note that all the participants in this study were skilled, having learned the stick-
balancing task successfully. It is important to consider focus of attention in the
context of Bernstein’s ideas on expertise and its development. Although actors focus
on moving body parts in the early stages of skill acquisition, attention shifts to wielded
objects in the advanced stages of skill (Bernstein 1967). Advanced tennis players tend
to focus on the ball or end point of the trajectory for a successful return, rather than
the racquet or limb. In the stick-balancing case, there is no clear boundary between
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where one ends and the other begins. Therefore, it is likely that stick balancers at
earlier stages of skill acquisition show stronger differences as a function of attentional
focus. Following this study, one could predict that task-irrelevant focus would not
benefit less experienced stick balancers (Milton et al. 2008).

General Discussion

Goal-directed motor tasks commonly require the use of objects, tools, and imple-
ments to interact with our environment. Dynamic object interactions can vary in
terms of the rigidity, geometry, and stability of manipulated objects, yet, we formu-
late adaptive motor responses that accommodate differences in the task, context, and
object mechanics. Knowledge of the underlying control mechanisms and learning
processes is imperative for understanding the basis of skilled object manipulation.
The four studies presented in this review chapter used an inverted pendulum (i.e.,
stick) balancing paradigm to investigate skill acquisition and elaborate the task- and
context-dependent attributes of unstable object control.

In the first study, we evaluated the statistics of the spatio-temporal properties of
stick displacement (Cluff and Balasubramaniam 2009). After establishing that learn-
ing resulted in a systematic increase of balancing time, we fit our data to theoretical
Lévy distributions. Results showed the probability of fingertip speed increase over
analyzed time scales was Lévy-distributed and that this distribution changed with
learning. Essentially, motor learning caused systematic increase in the prevalence of
upper limb displacements in the standing condition, a feature less visible in seated
subjects.

Motivated in part by the observations of Cabrera and Milton (2002) that angu-
lar stick fluctuations occur on timescales shorter than estimated voluntary control
delays (~100ms) and show amplitude variations that are characteristic of on—off
intermittency, we quantified the nature of this intermittency using modern analytic
tools based on a numerical phase space reconstruction method (RQA). Provided that
angular stick fluctuations are intermittent, we hypothesized that upper limb displace-
ments would be composed of two independent timescale components differentiated
by their correlative properties. We additionally hypothesized that the temporal struc-
ture of upper limb corrections would be modulated by the balancing context. We
used a numerical phase space reconstruction method (cf. Webber and Zbilut 1992;
Marwan et al. 2007) to determine whether the switching time to feedback control
was dependent on motor learning and the balancing context. We demonstrated (Cluff
et al. 2009) that upper limb displacements are indeed composed of two independent
timescale components: a fast stochastic component and slow closed-loop feedback
control. Our results revealed that the discontinuity, stability, and regularity of up-
per limb displacements changed systematically across training sessions. Another
important finding was the differential control evoked by changes in the balancing
context. We found that the average time interval between upper limb corrections was
substantially shorter for the seated balance.
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Our studies raise important concerns for studies that employ the Kalman filter
algorithm (Kalman 1960), commonly seen in studying systems with assumed mo-
tor and sensory noise. The limitation of the Kalman filter is that it is designed to
handle Gaussian-distributed additive noise. I believe that the discovery of Lévy dis-
tributions in fingertip displacements questions the validity of using control models
used by Mehta and Schaal (2002). I strongly suggest the use of suitable estimation
algorithms (Gordon et al. 2006; Sinha et al. 2007) that are designed to be sensi-
tive to Lévy distributions. Although it is well established that variability in muscle
force production increases with movement amplitude, state-dependent motor noise
is commonly assumed to be negligible (for review, see Todorov 2005). Future studies
should carefully consider the role of stochasticity in the CNS in the development of
state estimation models.

Complex motor tasks often involve the coordination of posture and voluntary arm
movements. In the third study, we performed an innovative analysis that investigated
the learning-dependent coupling of posture and upper limb dynamics (cf. Marwan
etal. 2007). We interpreted our results from the perspective of a hierarchical learning
model (Newell et al. 2001) and this study was among the first to quantify learning and
control at multiple levels of the motor system. Our results corroborated the model of
Newell etal. (2001) and demonstrated that skill acquisition involved two independent
learning processes. First, we found that posture and upper limb control were governed
by intermittent balancing strategies and that the time interval between corrections
increased systematically across the investigated training period. The second learning
effect involved the incremental occurrence and lengthened the coupling of correlated
posture-upper limb trajectories.

Thus, I can make the case in which posture-upper limb coordination is contingent
on a state-dependent (de)coupling mechanism. I have additionally proposed that the
abrupt decoupling of posture-upper limb trajectories is caused by the instability of
subsystem dynamics. Our rationale is supported by the observation that human feed-
back parameters are often tuned near instability. Thus, we anticipate that perturbing
forces applied to the tip of the stick would induce the abrupt dissociation of posture-
upper limb coupling to enable independent subsystem corrections. State-dependent
posture-upper limb coupling is a plausible control mechanism and is similar to the
spontaneous recruitment of body segments that has been shown to intermittently
stabilize intereffector coordination (Buchanan and Kelso 1999).

Finally, I tested the constrained action theory (Wulf and Prinz 2001) using explicit
attentional manipulations during unstable object control. Performance variability
increased irrespective of whether participants focused on minimizing fingertip or
stick displacements. Thus, explicit instruction (relevant to the task at hand), in-
creased task variability and was in fact counterproductive (Beilock et al. 2002, 2008;
Beilock et al. 2008). However, the performance of a task-irrelevant cognitive task
reduced performance variability of both stick-balancing and COP displacements.
The critical time for switching to corrective movements also increased for both out-
come and execution-oriented attentional manipulations. It is likely that participants
shifted to a slower and possibly more conscious corrective mechanism. Note that
the general failure to support the constrained action theory might have been due to
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the fact that our participants were expert stick balancers. Novice subjects are more
likely to be influenced by this manipulation (Beilock et al. 2002) since they lack
specific knowledge about the interaction between limb and object dynamics. Such
participants might gain more from outcome-oriented feedback (Todorov et al. 1997;
Malone and Bastian 2010).

The stick-balancing problem is thus a rich problem that provides the opportunity
to explore a variety of issues in motor control and learning. By employing techniques
that have borrowed from statistical mechanics, we have established how task-specific
changes can be observed at different spatial and temporal scales as a person learns
to master this complex task. Future research should reveal the role of multiple joints
and the collective error correction formed to solve the stick’s dynamics and experi-
mentation that involves manipulating the physical dynamics of the stick itself. This
research will further add to our understanding of the complex interactions between
the task, actor, and environment during the acquisition and performance of unstable
object manipulation.
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