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Abstract

When multiple individuals interact in a conversation or as part of a large crowd, emergent structures
and dynamics arise that are behavioral properties of the interacting group rather than of any individual
member of that group. Recent work using traditional signal processing techniques and machine learn-
ing has demonstrated that global acoustic data recorded from a crowd at a basketball game can be used
to classify emergent crowd behavior in terms of the crowd’s purported emotional state. We propose that
the description of crowd behavior from such global acoustic data could benefit from nonlinear analy-
sis methods derived from dynamical systems theory. Such methods have been used in recent research
applying nonlinear methods to audio data extracted from music and group musical interactions. In this
work, we used nonlinear analyses to extract features that are relevant to the behavioral interactions that
underlie acoustic signals produced by a crowd attending a sporting event. We propose that recurrence
dynamics measured from these audio signals via recurrence quantification analysis (RQA) reflect infor-
mation about the behavioral dynamics of the crowd itself. We analyze these dynamics from acoustic
signals recorded from crowds attending basketball games, and that were manually labeled according to
the crowds’ emotional state across six categories: angry noise, applause, cheer, distraction noise, pos-
itive chant, and negative chant. We show that RQA measures are useful to differentiate the emergent

Correspondence should be sent to Shannon Proksch, Department of Psychology, Augustana University, Sioux
Falls, SD 57197, USA. E-mail: shannon.proksch@augie.edu

This is an open access article under the terms of the Creative Commons Attribution License, which permits
use, distribution and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcogs.13363&domain=pdf&date_stamp=2023-10-23


2 of 33 S. Proksch et al. / Cognitive Science 47 (2023)

acoustic behavioral dynamics between these categories, and can provide insight into the recurrence
patterns that underlie crowd interactions.

Keywords: Recurrence quantification analysis; Acoustical analysis; Crowd behavior; Dynamical
systems; Emergence

1. Background

Thousands of people attending a basketball game are clapping and shouting, some chat-
ting with their neighbors, some yelling toward the court, when the chant of “Let’s Go, [Team
Name]” seems to emerge out of the crowd without any particular warning or leader, spreading
through the fans until everyone is participating in the chant. The spreading of this synchro-
nized acoustical behavior is not unlike the “wave” that physically spreads through groups of
fans raising their arms and standing in succession (Farkas, Helbing, & Vicsek, 2002), and is
one example of collective social interaction that may spontaneously emerge during a sport-
ing event through a form of “social contagion” (Mann, Faria, Sumpter, & Krause, 2013).
The emergence of this chant, or repetitions of words and rhythmic claps (e.g., “De-fense!”
clap, clap), are exemplars of collective acoustical behavior among large crowds. These simple
chants and rhythmic clapping behavior can serve as an auditory signal to enhance synchrony
and coordination among crowd members who are spatially separated or otherwise outside of
visual contact (Mann et al., 2013).

The question of synchrony or other forms of coordination during large group interactions
has been investigated in the relatively structured social interactions of musical participation,
and increasingly, it is being recognized that the behavior of a large interacting group may not
be wholly explained by description of local interactions alone, but rather by description of
the emergent dynamics of the group itself (Demos & Palmer, 2022; Høffding et al., 2023;
Schiavio, Maes, & van der Schyff, 2022). We argue that the methods used to study these
musical social interactions (from coordination dynamics and dynamical systems, c.f. Schi-
avio, Maes, and van der Schyff, 2022) can be expanded to study the dynamics of less
scripted behavior, such as the dynamics of crowd behavior at sporting events. Farrera and
Ramos-Fernández (2022) describe a phenomenon of emergent collective rhythm (like the
collective “wave”) as the emergence of “group-level rhythmic patterns” that result from
the self-organization of social behavior through entrainment and synchronization (Farrera
& Ramos-Fernández, 2022). This social behavior is characterized by “context-specific inter-
actions” and mutual “fast adaptation to other group members” actions’ (Demos & Palmer,
2022). This coordinated crowd behavior at sporting events can include both the physical
movement of the crowd and variations of coordinated or rhythmic auditory signals gener-
ated by their cheers and chants. But of particular importance is the reciprocal interaction
between members of the crowd, with local patterns of signals nested into larger dynam-
ics that reflect the behavior of the crowd as a whole. In this sense, the basketball crowd
with its collective rhythms and emergent chants can be thought of as an interaction-dominant
system.
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Interaction-dominant systems—such as a collection of individuals interacting within a
crowd—can be described by emergent structures and dynamics that are behavioral prop-
erties of the system itself, rather than of any individual component (Riley, Richardson,
Shockley, & Ramenzoni, 2011). The emergent dynamics of crowd behavior have been fruit-
fully modeled according to biological phenomena such as swarm behavior (Kok, Lim, &
Chan, 2016). Classification of emergent crowd dynamics, often using computer vision tech-
nology, has typically relied on analysis of video data for features, such as crowd density
estimation, motion detection, and movement/behavior tracking of individual signals or group
behavior (Kok et al., 2016; Swathi, Shivakumar, & Mohana, 2017). However, it is not always
feasible to obtain high-quality image, video, or speech data of a crowd in action, nor is it
always feasible to obtain signals measured from each individual in an interacting crowd. We
seek to extend the study of emergent crowd behavior to include analysis of the global acoustic
output of a crowd as a whole. This acoustical analysis of crowd behavior can augment cur-
rent video-based crowd behavior analysis, and can also mediate in cases where video data are
incomplete or unclear.

Recent work using traditional signal processing techniques (e.g., spectral analysis) and
machine learning has demonstrated that global acoustic data recorded from a crowd at a
basketball game can be used to classify crowd behavior in terms of the crowd’s purported
emotional state (Butler et al., 2018). Importantly, these data were not a collection of individ-
ual acoustic signals from individual members of the crowd, but rather a global acoustic signal
measured from the crowd as a whole. Common acoustic analyses used for classifying human
speech, as well as crowd noise, include spectral and mel frequency cepstral coefficients
(Reddy, Sinha, & Seshadri, 2013), where the latter measure is based on an approximation
of human hearing (Singh & Rani, 2014). These measures assume that at short enough time
scales important features of an audio signal are reasonably stationary. Nonlinear analysis
techniques, such as recurrence quantification analysis (RQA), are adept at capturing exactly
that nonstationarity that characterizes audio signals at longer time scales (Wallot & Leonardi,
2018). RQA has been used to quantify the coordinated and uncoordinated acoustical activity
of a large interacting group in a scripted musical interaction (Proksch, Reeves, Spivey, & Bal-
asubramaniam, 2022). We build on Proksch et al. (2022), and propose that analysis of crowd
behavior from global acoustic data in the ecological and nonscripted environment of a basket-
ball game could similarly benefit from taking a dynamical systems approach that embraces
the nonlinearity and nonstationarity present in the sounds generated by an interacting crowd.

Our paper presents a case study analysis of two data sets containing labeled instances of
crowd sound recorded from the student section of two basketball games. Specific aims of our
project are expanded in Section 1.3. Briefly, our first aim is to describe the nonlinear dynam-
ics present in the sound of the crowds using RQA (more details in Section 2.1 ). We test
whether there are differences in RQA metrics for specific labels of crowd sound based on a
theory-driven hypothesis that some categories of crowd interactions (e.g., chanting) require
higher coordination than other categories (e.g., noise-specific hypotheses are outlined in Sec-
tion 1.3). Our second aim concerns the practical use of RQA metrics in the prediction of
crowd sound behavior in a data-driven approach. We train a support vector machine (SVM)
classifier on crowd sound labels and RQA results from a subset of crowd sound samples, and
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test whether the model can predict the crowd sound label based on RQA results of unseen
data. To motivate each of these aims, we first provide background into the Dynamical Sys-
tems framework with further explanation of RQA (Section 1.1), the Dynamics of Collective
Interaction, particularly involving behavioral and physiological synchrony during group inter-
personal interaction (Section 1.2), and the concept of Acoustic Social Coordination and its
relevance to the context of sporting events (Section 1.2.2 ). We then introduce the two data
sets which make up this case study and our methods of applying RQA to describe (Aim 1)
and predict (Aim 2) the crowd’s acoustical behavior in each basketball game. We end with
a discussion of results of this case study and the potential application to further research on
large group interaction.

1.1. Dynamical systems

Dynamical systems theory seeks to describe the nonlinear behavior of large-scale systems
that emerges from interacting components/individuals (Connell, DiMercurio, & Corbetta,
2017). Such emergent behavior arises due to the soft-assembly of individual components into
metastable patterns of behavior (Kello & Van Orden, 2009). When large groups of people
gather together, they consciously and unconsciously coordinate their behavior in a number of
ways, from cheering with the same chants to spontaneously synchronizing in their applause
at concert. The patterns of synchronicity in the sounds generated by crowds demonstrate a
process of social self-organization (Néda, Ravasz, Bréchet, Vicsek, & Barabási, 2000).

One tool in the dynamical systems toolbox is RQA. RQA is used to quantify structures
that can be visualized in recurrence plots generated from the nonlinear behavior of a time
series that has been subject to state space reconstruction (Marwan, Wessel, Meyerfeld,
Schirdewan, & Kurths, 2002; Marwan, Romano, Thiel, & Kurths, 2007; Takens, 1981;
Vlachos & Kugiumtzis, 2010). Traditional RQA, as well as multivariate approaches like
cross RQA and multidimensional RQA (mdRQA), has proven useful in describing the
behavioral aspects of joint action in dyadic and group interaction. These analyses are robust
to the nonlinearity and nonstationarity of time-dependent signals, and can be used to evaluate
relative coordination dynamics as well as transitions between order and chaos in such systems
(c.f. Wallot and Leonardi, 2018 for a detailed review and tutorial).

In a recurrence plot, time series data are plotted on axes of time by time. A point (i, j) is
plotted if the value at time i and time j are recurrent within a specified neighborhood size of an
N-dimensional state-space after state space reconstruction. The line of incidence (LOI) along
the main diagonal shows the time series at a time lag of 0. Each step away from the LOI
represents the trajectory of the system at a time lag, depicting self-similarity of the system
over time.

Information from a recurrence plot is quantified into a variety of metrics via RQA. The
recurrence rate quantifies the percentage of points on a recurrence plot and represents pat-
terns of behavior that persist over time. Determinism quantifies the percentage of points that
fall on any diagonal line in the plot (except the LOI), and represents behaviors that belong to
a particular pattern of behavior over time. Entropy is the variability in these line lengths, rep-
resenting disorder of these sequences. Finally, laminarity quantifies the percentage of points
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Fig. 1. Green lines depict trajectories of consecutive recurrent points over time. Longer trajectories are quantified
in higher values of determinism. The plot on the left has many short diagonal trajectories consisting of only a few
consecutive recurrent points, while the plot on the right contains many long diagonal trajectories consisting of
many consecutive recurrent points over time (even more than we have highlighted). These plots are zoomed in on
2 s of data from two different 5-s samples of crowd sound. At left: A 2-s sample of Distraction Noise. At right: A
2-s sample of positive chant. For zoomed out plots from full 5-s samples, refer to Fig. 3.

that fall on a vertical line on a recurrence plot, and represents clusters of behavior over a
short period of time to which the system may temporarily visit, leave, and return. Examples
of determinism and laminarity depicted from two samples of basketball crowd sound data are
shown in Figs. 1 and 2.

RQA has additionally proven useful in describing and classifying acoustic data. Zhang
et al. (2011) made use of recurrence plots and RQA to classify audio signals into noise-like,
transient, harmonic-like, and mixed signals. Proksch et al. (2022) further justified the use
of RQA to describe differences in acoustical signals generated by multiagent behavior of a
performing musical ensemble who were either uncoordinated with each other (the asignal
they collectively generated was noise-like), or were coordinated with each other (the audio
signal they collectively generated was harmonic-like).

1.2. Dynamics of collective interaction

The context of a social event affects the emergence of collective synergies, synchronicities,
and multistable dynamics in the acoustical behavior of collective interactions. To understand
how analysis of the acoustical behavior of a crowd might expand research on joint action and
crowd dynamics, it is necessary to provide context on the growing body of research evaluating
coordination dynamics that arise during group interactions, much of which has focused on the
behavioral and physiological modalities.
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Fig. 2. Highlighted instances of laminar states in a time series reflected in a recurrence plot. The bursts in the time
series appear as white space with few recurrent points in the recurrence plot. This is because this bursty state is
revisited only three additional times after the instance highlighted in pink along the main diagonal. Meanwhile,
the state highlighted in yellow repeats an additional five times for the duration of the behavior. This plot is one 5-s
sample of crowd sound.

1.2.1. Modalities of synchrony and coordination in groups
Recently, MdRQA was used to measure physiological synchrony in the heart rates of fans

who attended a live basketball game, and fans who gathered in small groups to attend a live
screen of a basketball game on television (Baranowski-Pinto, Profeta, Newson, Whitehouse,
& Xygalatas, 2022). MdRQA is able to compute recurrence measures across multiple sig-
nals (i.e., the heart rates of multiple individuals), in contrast to RQA that evaluates recur-
rence measures across the length of a single signal. Increased interdependence in heart rate
was found for fans who attended the live game, indicating that there is an enhanced social
effect of the interpersonal dynamics inherent in attending this sporting event live and in-
person compared to virtually engaging with the game over a television screen. This was
demonstrated through increases in both determinism (DET: indicating stability in the sys-
tem and the ability to predict future states from past states) and average diagonal line length
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(ADL: indicating the length of time, or persistence, of recurrent states within the sys-
tem). Further, Baranowski-Pinto et al. found that individuals who attended the live game
exhibited stronger social cohesion, as reported by stronger feelings of transformativeness,
or the sense that their individual identity has “fused” to the identity of the group. These
self-report measures were correlated with recurrence measures for fans who attended the
game in person. A second study evaluated behavioral synchrony of an audience attend-
ing a live or prerecorded rock concert (Swarbrick et al., 2019). Where basketball fans in
Baranoiwski-Pinto et al.’s study were both watching a live game, which differed only by
being in-person or screened on television, Swarbrick et al.’s study maintained the interper-
sonal dynamic between concert attendees by having concert-goers in each condition be phys-
ically present in the concert venue (Swarbrick et al., 2019). In the live concert, the rock
band performed on the stage, while in the nonlive condition, a recording of that perfor-
mance was projected onto the stage. Faster head movements, a measure of vigor and engage-
ment, were found during the live performance than the nonlive performance. No effect was
found between performances for entrainment with the music—however, it was not analyzed
whether there was enhanced movement synchrony between audience members during either
performance.

In a third study, both physiological and behavioral synchrony were evaluated in groups
of three people engaged in a joint drumming task (Gordon, Gilboa, Cohen, & Kleinfeld,
2020). Synchronous or asynchronous drumming interaction was achieved by asking partic-
ipants to drum along to an auditory beat with a predictable or unpredictable tempo, respec-
tively. Gordon et al. (2020) found that the drumming task itself led to increased synchrony
of heart-beat inter-beat-intervals (IBIs) between group members compared to baseline (non-
interaction). Groups with higher physiological synchrony during the initial drumming task
were more coordinated during a subsequent free-improvisation drumming task. Interestingly,
this increase in heartbeat IBI synchrony was not related to whether the initial drumming task
was synchronous or asynchronous, indicating that the enhanced heartbeat IBI synchrony may
stem from the effect of the interpersonal interaction itself, rather than the behavioral synchro-
nization of the drumming itself. This may be similar to interaction at a sporting event, where
individuals are not always synchronizing directly with other fans in attendance. Further, even
during a coordinated cheer, individuals may be “in sync” with a global signal without being
“in sync” to other individuals directly nearby.

These studies highlight the importance of interpersonal interaction—as well as a live, in-
person interaction context—in facilitating physiological and behavioral synchrony and the
emergence and maintenance of shared social bonds. Although the specific modality of focus
differed in each study (from physiological measures of heart-rate, to behavioral measures of
movement), all of the interactions in these studies occurred in a shared acoustic and auditory
environment. Anthropologist and ethnomusicologist, Blake and Cross (2015), state that it is
precisely this environment that is “one of the most powerful and flexible tools that humans
use to manage and mediate relationships with each other and with the environments that they
construct or modify.” In the next section, we situate our interest in acoustic social coordination
and in the shared social scripts that underlie the coordination of acoustical behavior during
the interactions of a crowd.
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1.2.2. Acoustic social coordination
The emergence of different joint action dynamics can be analyzed in terms of social

scripts—implicit or explicit norms for organizing behavior in social contexts that are “under-
written by culturally specific narratives” (Albarracin, Constant, Friston, & Ramstead, 2021).
The acoustical behavior of the musical ensemble described in Section 1.1 was carried out
according to an explicitly social script—a musical score—governing the transition from unco-
ordinated action of individuals to coordinated interaction of a multi-agent group. These two
coordination modes are reflected in the emergence of structured recurrence patterns over
time (Proksch et al., 2022). Applause after concerts can also follow certain implicit social
scripts—spreading by initial social contagion (Mann et al., 2013) and perhaps persisting while
slowly dying down, or ending abruptly as soon as a loudness threshold is passed (Michard &
Bouchaud, 2005). Fluctuations in the relative synchrony of sound generated by the applause
of a crowd attending a classical music concert have been shown to display an emergent peri-
odic signal. Initial applause is fast and asynchronous, and as synchrony increases, the overall
signal of the sound behavior increases, while the average noise of the sound decreases. This
decrease in average noise is a result of a slower clapping period that emerges as individu-
als clap in unison (Néda et al., 2000). Such audiences fluctuate between asynchronous and
synchronous behavior before ultimately fading out as the event draws to a close.

Basketball games are another social context that affords the emergence of coordinated
acoustical behavior among a group of interacting people. Rather than an explicitly written
script, fans at sporting events follow an at times explicit or implicit social script, where events
in the game and prompts from the announcer or cheerleaders, or other fans, govern the behav-
ior of fans gathered in the arena. Patterns of social self-organization emerge and dissipate
according to local interaction among fans and global interactions associated with the game.
When your team scores, the social script affords a cheer, when the other team is attempting a
free throw, the social script affords generating raucous noises in attempt to distract the player
on the court, and when the cheer leaders or a group of fans begin a rehearsed chant (“De-
fense”;“B-Y-U Cougars”), the social script requires that you chant along. These rehearsed
chants are an example of joint speech, a collective phenomenon where multiple individu-
als repeat the same words simultaneously with the purpose of engaging in group expression
(Cummins, 2013).

Synchrony demonstrated in this acoustical behavior, including the synchrony of joint
speaking during group chants, is an important characteristic of interpersonal interaction. The
repetition of chants or short rhythmic utterances in sporting events enables “synchronized
activity…an extreme form of coordination,” whereby individuals enact a collective “we” and
establish a coordinated group identity for as long as the behavior persists (Cummins, 2020).
Joint action research has demonstrated that higher levels of synchronous behavior are asso-
ciated with various aspects of prosocial cognition including: increased affiliation (Hove &
Risen, 2009; Wiltermuth & Heath, 2009), social cohesion (Marsh, Richardson, & Schmidt,
2009), group identity (McNeill, 2022), and cooperation (Kirschner & Tomasello, 2010). A
recent meta-analysis has shown that the effects of synchrony on prosocial behaviors and pos-
itive affect are larger for larger groups (Mogan, Fischer, & Bulbulia, 2017). However, it can
be difficult to measure synchronous activity or joint speech from very large groups of people
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engaged in naturalistic social interactions. It may not always be possible to obtain one signal
from each member of a large group to evaluate correlations and synchrony between those
signals. What may be more feasible in such situations, is to record a global acoustic signal
generated by the group as a whole.

1.3. Project aims

Previously, Proksch et al. (2022) applied RQA analysis to a global acoustic recording of
a performing musical ensemble. Whether individuals within that ensemble were coordinat-
ing their behavior, or not, was dictated by a musical score. These two patterns of behavioral
dynamics (uncoordinated vs. coordinated) were reflected in RQA metrics derived from ana-
lyzing recurrence plots generated from the resampled audio signals. Here, we present case
studies of two crowds at two Brigham Young University (BYU) basketball games. We analyze
the recorded audio signal of the crowds of students engaging in various forms of acoustical
behavior at each game. Following from both Zhang et al. (2011) and Proksch et al. (2022),
we used nonlinear analyses to extract features that are relevant to the behavioral interaction
and coordination of the crowd who produced these audio signals. We propose that recurrence
dynamics measured from this global audio signal reflect information about the behavioral
dynamics of the crowd itself. We calculate recurrence features using RQA to evaluate the
emergent acoustical behavioral dynamics of the interacting crowd.

This paper has two objectives. The first objective is a theory-driven description of crowd
sound dynamics using specific RQA metrics relevant for describing system-level collective
behavior: Recurrence Rate, Determinism, Entropy, and Laminarity (described in more detail
in the methods below). We predict that the coordinated acoustical behavior of the crowd will
exhibit higher stability and recurrence (measured by determinism and recurrence rate) dur-
ing pseudo-rhythmically organized joint speech such as rhythmic chants. Meanwhile, the less
structured nature of acoustic events such as distraction noise will exhibit lower measures
of stability and recurrence. We argue that chant requires whole-crowd coordination to pro-
duce specific words, that is, acoustic patterns as a whole. Cheering and applause are behav-
iors involving intermittent coordination, engendering individual patterns of clapping, hooting,
and so on that may be locally coordinated within earshot and eyeshot, but specific acoustic
patterns will vary across the crowd. Distraction or angry noise is an aim for uniform noise
with minimal structured variability in the acoustic signal, which is noise that may hinder or
perturb performance of the players on the court. We predict that the strongest coordination
(i.e., chanting) will result in higher RQA values due to a higher percentage of recurring behav-
ior (measured through recurrence rate), higher stability in sequences of behavior (determin-
ism), increased variability in the possible sequences of behavior (entropy), and increased clus-
ters of behavioral states that are revisited over time (laminarity). Intermittent or local coor-
dination (i.e., cheer/applause) will result in lower values across these RQA metrics. Finally,
inhibited synchronization and minimal coordination toward structured variation (i.e., noise)
will result in the lowest values. Thus, we hypothesize that RQA will reflect these three distinct
modes of acoustic patterning that vary in recurrence structure from most to some to least.
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Table 1
Crowd sound categories and descriptions adapted from Butler et al. (2018)

Crowd Sound Category Description

Angry Noise Crowd shouting in anger.
Applause Crowd clapping that can include crowd vocalization.
Cheer Loud, positive crowd vocalization.
Distraction Noise Attempts by crowd to draw an opposing team member’s attention away from the

game, most commonly when the opposing team possesses the ball or is about to
shoot a free throw.

Negative Chant Crowd shouting in anger or distress, usually directed toward referees after a less
than ideal call or toward a player from the opposite team.

Positive Chant Rhythmic crowd shouting, usually directed toward the home team, for example,
“De-fense” or “B-Y-U- Cougars.”

The second objective is a data-driven, machine learning approach to classify each crowd
sound based on the full suite of metrics available from the PyRQA package (a total of 19
RQA metrics, listed in the methods). A combination of RQA metrics and SVM classifica-
tion has proven effective at discriminating between nonlinear (and nonstationary) dynamical
systems that exhibit similar dynamics. dos Santos, Barroso, Godoy, Macau, & Freitas (2014)
showed that RQA plus an SVM classifier showed successful classification of time series data
generated from the Logistic map—a canonical example of a nonlinear dynamical system—
as well as classification of real biological data describing the (nonlinear and nonstationary)
dynamics of human heart rate variability across different age groups and health contexts (dos
Santos et al., 2014). We apply an SVM classifier on RQA metrics of samples of crowd data
that were labeled according to differing classes of acoustical behavior. We predict that the
machine learning analysis will show that RQA features can clearly distinguish between the
acoustic patterns that correspond to chanting (strongest coordination/synchronization) ver-
sus cheering (intermittent coordination/synchronization) versus distracting (weakest coordi-
nation/inhibited synchronization).

2. Methods

2.0.1. Crowd sound data sets
Our data sets are previously collected audio recordings and associated text files with labeled

crowd events. Each audio recording was recorded from the student section of two Men’s
BYU basketball games (Butler et al., 2018). The data sets were previously labeled by BYU
undergraduates—who were unaware of the hypotheses of the current study—into different
classes of acoustical behavior along with labels of associated game events, shown in Table 1.
The specific labels for crowd events were agreed upon by consensus and with reference to
specific events in accompanying video recordings of the basketball game (e.g., distraction
noise associated with free-throws by the opposing team, positive chant directed toward the
home team, negative chant directed toward the opposing team). Elements of crowd sound
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S. Proksch et al. / Cognitive Science 47 (2023) 11 of 33

Table 2
Nonoverlapping 5-s samples used for RQA and linear regression

Game 1 Game 2
Crowd Sound Category # of samples # of samples

Angry Noise 16 17
Applause 15 25
Cheer 47 79
Distraction Noise 116 77
Negative Chant 14 0
Positive Chant 63 58

could have multiple labels (e.g., applause often accompanied by cheer). In the current paper,
we discarded any samples with multiple labels.

For Game 1, we analyze six classes of acoustical behavior that were observed in the crowd
during this basketball game: Angry Noise, Applause, Cheer, Distraction Noise, Negative
Chant, and Positive Chant. For Game 2, we analyze the same classes except for Negative
Chant, of which no events were labeled for this game. We did not analyze sound events
labeled as Singing (which was defined as “Harmonic crowd vocalization accompanied by the
pep band or PA system”) or Silence. The raw acoustic data were recorded at a sampling rate
of 50 kHz. We resampled by a factor of 10 for nonlinear analysis at 5 kHz. As described in
Proksch et al. (2022), resampling to a lower sampling rate focuses on the higher-order rhyth-
mic properties and aggregate amplitude of the acoustic signal, essentially filtering out much
of the pitch-information from the acoustical behavior of the audience as well as semi-pitched
signals from shoes across the basketball court that may have been picked up by the micro-
phones.

2.1. Part 1: Recurrence quantification analysis

For Part 1, 5-s samples were created using nonoverlapping windows (such that a 12-s event
will have two 5-s samples, e.g., 0–5 s, and 5–10 s, and the remaining 2 s in the event are dis-
carded). Any samples shorter than 5 s were discarded, and residual data longer than multiples
of 5 s were also discarded. Five-second samples were chosen as the smallest sample that could
capture relevant behavioral information about the crowd. For example, a 5-s sample allows
for at least one repetition of a simple chant if performed by a crowd at roughly 100–120 beats
per minute. This same 5-s sample size was also applied to detect recurrence information in
Proksch et al. (2022). The number of samples for each crowd sound category is reported in
Table 2.

Based on Proksch et al. (2022), we chose four RQA metrics to evaluate, which are each
indicative of different aspects of behavior in nonlinear dynamical systems: Recurrence Rate,
Determinism, Entropy, and Laminarity.

• Recurrence rate (the percentage of recurrence points on the recurrence plot) represents
patterns of behavior that repeat over time.
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12 of 33 S. Proksch et al. / Cognitive Science 47 (2023)

• Determinism (the percentage of points that fall on any diagonal line in the recurrence
plot) represents behaviors that belong to a longer sequence of behavior.

• Entropy (the variability in lengths of these diagonal lines) represents the amount of
disorder there is in these sequences.

• Laminarity (the percentage of points that fall on a vertical line in the recurrence plot)
represents clusters of behavior for a length of time, that is, when a system visits a
behavior for a period of time, leaves, and then returns to that behavioral state.

RQA was run on the time series data extracted from the resampled audio for each of these
5-s samples using PyRQA version 8.0.0 (Rawald, Sips, & Marwan, 2017), with an embedding
dimension of 5, a delay of 5, and a neighborhood value fixed radius of 1*standard deviation
(SD), using maximum norm to calculate neighbors of the phase space trajectory. Parameters
for the time delay and embedding dimension were chosen based on Average Mutual Infor-
mation (AMI) and Fale Nearest Neighbors (FNN), respectively, using a custom MATLAB
GUI provided from the 2019 APA Advanced Training Institute in Nonlinear Methods for
Psychological Science.

There are a variety of approaches to setting the neighborhood threshold value. A standard
approach, which we use, is setting this threshold value according to a fixed amount of near-
est neighbors at some ratio of the standard deviation of the data. This holds constant the
number of neighbors within a neighborhood and also holds the number of recurrence points
constant in a column of the recurrence plot (Eckmann, Kamphorst, & Ruelle, 1987). It has
been suggested that 5*SD be used to accurately detect a signal in the presence of signifi-
cant observational noise (Thiel et al., 2002). However,“this approach fails for signals of very
low signal to noise ratio, or when the amount of noise is unknown” (Schinkel, Dimigen, &
Marwan, 2008). Additionally, the so-called “noise” is the signal in our data, therefore, we
settle on a similar approach to Zhang et al. (2011), setting this threshold based on a Fixed
Amount of Nearest neighbors value of 1*SD. (Note: Zhang et al. (2011) used 1*standard
error—we chose standard deviation because the value given by SD of the mean is always
larger than the SE of the mean, assuring that our radius is large enough to sufficiently capture
the recurrence structures in the recurrence plots.)

2.1.1. Statistical analyses
A separate linear regression model with planned contrasts was fit for each RQA metric of

interest (Recurrence Rate, Determinism, Entropy, and Laminarity) as a function of the level
of Crowd Sound Category:

• Recurrence Rate ∼ CrowdSoundCategory • Entropy ∼ CrowdSoundCategory

• Determinism ∼ CrowdSoundCategory • Laminarity ∼ CrowdSoundCategory

There were six levels of Crowd Sound Category for Game 1 (Angry Noise, Applause,
Cheer, Distraction Noise, Negative Chant, and Positive Chant), and five levels for Game 2
(Angry Noise, Applause, Cheer, Distraction Noise, and Positive Chant). Sum-to-zero con-
trasts were used to specify a specific linear combination for each predictor in a priori planned
comparisons. Since we are not testing a specific treatment or change from any initial baseline
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S. Proksch et al. / Cognitive Science 47 (2023) 13 of 33

Table 3
Contrast matrix for a priori sum-to-zero contrasts

Game 1

Angry Noise 1 0 0 0 0
Applause 0 1 0 0 0
Cheer 0 0 1 0 0
Distraction Noise 0 0 0 1 0
Negative Chant 0 0 0 0 1
Positive Chant −1 −1 −1 −1 −1

Game 2

Angry Noise 1 0 0 0
Applause 0 1 0 0
Cheer 0 0 1 0
Distraction Noise 0 0 0 1
Positive Chant −1 −1 −1 −1

of crowd sound behavior, sum contrasts provide the advantage of comparing RQA metrics in
each category to the average value across all categories, rather than to a baseline or control
category (Schad, Vasishth, Hohenstein, & Kliegl, 2020). That is, we are comparing each con-
trast to the mean of all means (the grand mean) of the RQA metric of interest. The contrast
matrix is shown in Table 3.

Following regression analysis, we implemented post hoc pairwise comparisons of esti-
mated marginal means to compare the relative RQA metrics between each pair of crowd sound
categories. Pairwise comparisons were implemented in the R package emmeans, version
1.5.4 (Lenth, 2022). The linear regression and pairwise comparisons of estimated marginal
means were implemented separately for each of the four RQA measures of interest. This is
because each RQA measure addresses a different aspect of the crowd’s behavior over time, as
described previously.

2.2. Results

2.2.1. RQA results
Fig. 3 shows recurrence plots generated from the time series data of a representative 5-s

audio sample from two crowd sound categories. These recurrence plots visualize characteris-
tic patterns of recurrence that are quantified through RQA. Qualitatively, the recurrence plot
generated from 5 s of distraction noise resembles recurrence plots of uncoordinated group
behavior (Proksch et al., 2022) or noisy-like audio signals (Zhang, Liu, Zhang, & Bu, 2011),
while the recurrence plot generated from 5 s of labeled positive chant resembles a recur-
rence plot generated from coordinated group behavior (Proksch et al., 2022) or mixed audio
signal (Zhang et al., 2011). Distraction noise shows low levels of stability and recurrence,
while positive chant shows high levels of stability and recurrence, as quantified by RQA. Fur-
ther statistical analysis on the distribution of RQA metrics in each crowd sound category is
described below.
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14 of 33 S. Proksch et al. / Cognitive Science 47 (2023)

Fig. 3. Representative time series and recurrence plots from 5-s samples of two categories of crowd sound: Dis-
traction Noise (left) and Positive Chant (right). During this sample of chant, the audience is repeating “De-fense
(clap clap), De-fense (clap clap).”

2.2.2. Summary statistics
Table 4 lists the associated descriptive means, median, and standard deviation of RQA

metrics, and Fig. 4 shows the smoothed density distributions and quartile lines for the RQA
data from each crowd sound category. For Game 1, the two chant categories (Positive and
Negative chant) display the highest values of recurrence rate, determinism, entropy, and lam-
inarity. The two noise categories (Angry and Distraction Noise) display consistently low val-
ues of these RQA metrics, with Angry Noise having particularly low values of Entropy and
Laminarity. Cheer and Applause are the most variable, with multimodal or nearly flat distribu-
tions exhibited by Cheer. Game 2 follows a similar pattern, with the chant category (Positive
Chant) displaying the highest values of all four RQA measures. Recurrence rate values are
low for all other categories. The distribution of determinism, entropy, and laminarity values
for cheer is relatively long-tailed, while the two noise categories (Angry and Distraction) and
the Applause category show a more peaked distribution in each of these categories, albeit
lower than Positive Chant.
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Table 4
Summary statistics for each RQA measure across six Crowd Sound Categories: Mean, median, and standard
deviation as calculated from original, nonbootstrapped data

Game 1
Recurrence Rate mean median sd

Angry Noise 0.06 0.05 0.02
Applause 0.08 0.08 0.03
Cheer 0.10 0.08 0.06
Distraction Noise 0.07 0.06 0.04
Negative Chant 0.12 0.11 0.05
Positive Chant 0.17 0.16 0.07

Determinism mean median sd

Angry Noise 0.25 0.20 0.10
Applause 0.37 0.36 0.11
Cheer 0.39 0.38 0.23
Distraction Noise 0.34 0.29 0.16
Negative Chant 0.52 0.50 0.14
Positive Chant 0.64 0.62 0.13

Entropy mean median sd

Angry Noise 0.72 0.66 0.24
Applause 0.94 0.90 0.26
Cheer 0.96 1.00 0.32
Distraction Noise 0.92 0.86 0.27
Negative Chant 1.17 1.13 0.25
Positive Chant 1.32 1.33 0.21

Laminarity mean median sd

Angry Noise 0.40 0.34 0.11
Applause 0.52 0.51 0.11
Cheer 0.51 0.53 0.22
Distraction Noise 0.45 0.40 0.16
Negative Chant 0.65 0.65 0.13
Positive Chant 0.75 0.74 0.10

Game 2
Recurrence Rate mean median sd

Angry Noise 0.04 0.04 0.00
Applause 0.06 0.05 0.03
Cheer 0.04 0.04 0.01
Distraction Noise 0.06 0.05 0.02
Positive Chant 0.10 0.09 0.04

(Continued)
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16 of 33 S. Proksch et al. / Cognitive Science 47 (2023)

Table 4
(Continued)

Determinism mean median sd

Angry Noise 0.15 0.15 0.04
Applause 0.28 0.25 0.12
Cheer 0.22 0.16 0.14
Distraction Noise 0.31 0.28 0.12
Positive Chant 0.60 0.59 0.20

Entropy mean median sd

Angry Noise 0.56 0.52 0.13
Applause 0.74 0.69 0.22
Cheer 0.77 0.67 0.30
Distraction Noise 0.98 0.96 0.22
Positive Chant 1.39 1.23 0.50

Laminarity mean median sd

Angry Noise 0.24 0.24 0.07
Applause 0.42 0.40 0.13
Cheer 0.32 0.25 0.18
Distraction Noise 0.28 0.25 0.07
Positive Chant 0.72 0.71 0.17

Fig. 4. Ridgeline plots show the smoothed distribution and individual data points along with quantile lines for four
RQA measures across six Crowd Sound Categories: Angry Noise, Applause, Cheer, Distraction Noise, Negative
Chant ,and Positive Chant.

2.2.3. Linear regression with sum-to-zero contrasts and pairwise comparisons
Results of the linear regression with sum-to-zero contrasts are shown in Table 5. The first

row shows the grand mean of the RQA metric averaged across all categories of crowd sound.
The beta value for each subsequent category shows the deviations from this grand mean for
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Table 5
Results from the linear regression with sum-to-zero contrasts reported for each RQA measure across six crowd
sound categories (Game 1) and five crowd sound categories (Game 2)

Game 1
Recurrence Rate Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 0.10 0.00 23.96 < 2e−16***
Angry Noise −0.04 0.01 −3.72 0.000244***
Applause −0.02 0.01 −1.69 0.091698
Cheer −0.00 0.01 −0.56 0.576278
Distraction Noise −0.03 0.01 −4.88 <1.9e−06***
Negative Chant 0.02 0.01 1.92 0.055668
Positive Chant 0.07

Note. Residual standard error: 0.05056 on 265 degrees of freedom. Multiple R2 0.3922, Adjusted R2 0.3808.
F-statistic: 34.2 on 5 and 265 DF, p-value: < 2.2e-16

Determinism Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 0.42 0.01 31.34 < 2e−16 ***
Angry Noise −0.17 0.04 −4.72 3.89e−06 ***
Applause −0.05 0.04 −1.29 0.19917
Cheer −0.028 0.02 −1.21 0.22654
Distraction Noise −0.08 0.02 −4.22 3.41e−05 ***
Negative Chant 0.10 0.04 2.7 0.00722 **
Positive Chant 0.22

Note. Residual standard error: 0.1615 on 265 degrees of freedom. Multiple R-squared: 0.3845, Adjusted
R-squared: 0.3729. F-statistic: 33.11 on 5 and 265 DF, p-value: < 2.2e-16

Entropy Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 1.01 0.02 45.84 < 2e−16 ***
Angry Noise −0.29 0.06 −4.89 1.78e−06 ***
Applause −0.07 0.06 −1.16 0.24685
Cheer −0.04 0.04 −1.06 0.29013
Distraction Noise −0.09 0.03 −2.95 0.00344 **
Negative Chant 0.17 0.06 2.68 0.00787 **
Positive Chant 0.31

Note. Residual standard error: 0.265 on 265 degrees of freedom. Multiple R-squared: 0.3263, Adjusted
R-squared: 0.3136. F-statistic: 25.67 on 5 and 265 DF, p-value: < 2.2e-16.

Laminarity Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 0.55 0.01 42.53 < 2e−16 ***
Angry Noise −0.15 0.03 −4.30 2.40e−05 ***
Applause −0.03 0.04 −0.83 0.41
Cheer −0.03 0.02 −1.44 0.15

(Continued)
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Table 5
(Continued)

Laminarity Estimate Std. Error t value Pr(>|t|)
Distraction Noise −0.09 0.02 −5.34 1.68e−07 ***
Negative Chant 0.10 0.04 2.81 0.00539 **
Positive Chant 0.20

Note. Residual standard error: 0.1552 on 265 degrees of freedom. Multiple R-squared: 0.3911, Adjusted
R-squared: 0.3796. F-statistic: 34.05 on 5 and 265 DF, p-value: < 2.2e-16.

Game 2
Recurrence Rate Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 0.06 0.00 30.93 < 2e−16 ***
Angry Noise −0.02 0.01 −4.42 1.50e−05 ***
Applause 0.00 0.00 1.01 0.316
Cheer −0.02 0.00 −5.45 1.19e−07 ***
Distraction Noise −0.00 0.00 −1.07 0.286
Positive Chant 0.04

Note. Residual standard error: 0.02522 on 251 degrees of freedom. Multiple R-squared: 0.4059, Adjusted
R-squared: 0.3965. F-statistic: 42.88 on 4 and 251 DF, p-value: < 2.2e-16.

Determinism Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 0.31 0.01 28.21 < 2e−16 ***
Angry Noise −0.17 0.03 −5.51 8.82e−08 ***
Applause −0.03 0.03 −1.23 0.221
Cheer −0.09 0.02 −5.27 2.98e−07 ***
Distraction Noise −0.00 0.02 −0.07 0.947
Positive Chant 0.29

Note. Residual standard error: 0.148 on 251 degrees of freedom. Multiple R-squared: 0.5124, Adjusted
R-squared: 0.5046. F-statistic: 65.93 on 4 and 251 DF, p-value: < 2.2e-16

Entropy Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 0.89 0.02 36.29 < 2e−16 ***
Angry Noise −0.33 0.07 −4.94 1.46e−06 ***
Applause −0.15 0.06 −2.58 0.01049 *
Cheer −0.12 0.04 −3.09 0.00224 **
Distraction Noise 0.09 0.04 2.30 0.02213 *
Positive Chant 0.50

Note. Residual standard error: 0.3254 on 251 degrees of freedom. Multiple R-squared: 0.3928, Adjusted
R-squared: 0.3831. F-statistic: 40.59 on 4 and 251 DF, p-value: < 2.2e-16. ***p<0.001, **p<0.01 , *p<0.05

Laminarity Estimate Std. Error t value Pr(>|t|)
GrandMean(Int) 0.40 0.01 36.52 < 2e−16 ***
Angry Noise −0.15 0.03 −5.30 2.51e−07 ***

(Continued)
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Table 5
(Continued)

Laminarity Estimate Std. Error t value Pr(>|t|)
Applause 0.03 0.03 1.05 0.10
Cheer −0.08 0.02 −4.81 2.57e−06 ***
Distraction Noise −0.12 0.02 −7.04 1.81e−11 ***
Positive Chant 0.30
Note. Residual standard error: 0.1438 on 251 degrees of freedom Multiple R-squared: 0.6103, Adjusted

R-squared: 0.604 F-statistic: 98.25 on 4 and 251 DF, p-value: < 2.2e-16. ***p<0.001, **p<0.01 , *p<0.05

Note: Positive Chant values are not reported by the linear regression model, and were calculated independently
by subtracting the GrandMean from the mean values of Positive Chant.

Fig. 5. Pairwise Comparisons of Estimated Marginal Means across crowd sound categories for four RQA metrics:
(A) Recurrence Rate, (B) Determinism, (C) Entropy, and (D) Laminarity. Blue bars represent 95% confidence
intervals. Red arrows represent comparisons among the means. Where a red arrow overlaps an arrow from another
category, the difference between the overlapping categories is not significant.

that category. These results indicate that RQA metrics of some individual crowd sound cat-
egories can be differentiated from the grand average RQA metrics across all crowd sound
categories.

At an alpha of 0.05, Cheer and Applause were not significantly different from the grand
average for any RQA metrics in Game 1, and Distraction Noise is not significantly different
from the grand average values of recurrence rate. For Game 2, Applause was not signifi-
cantly different from the grand average values for all RQA metrics save for Laminarity, and
Distraction Noise was not significantly different from the grand average values of Recurrence
Rate and Determinism metrics.

Because positive chant was categorized as the final level for the sum-to-zero contrast coding
scheme, its comparison to grand average RQA metrics and associated p-value is not directly
reported from the model results. However, the change in RQA metrics can be calculated
by subtracting the grand average value from the mean value for positive chant. With this in
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mind, we can describe the general change from average RQA metrics for each Crowd Sound
Category in each game. For Game 1, there was a general decrease from the grand average
RQA values for most crowd sound categories, and an increase in values for both Negative
and Positive Chant. For Game 2, there was a general decrease from the grand average for the
nonchant RQA metrics, save for Entropy which saw an increase for Distraction Noise, and
and increase in all RQA metrics for Positive Chant.

Marginal means and pairwise comparisons with associated confidence intervals were
extracted from the linear regression, and computed for each crowd sound category using R
package emmeans, version 1.5.4 and are plotted in Fig. 5 and listed in Table 6. Blue bars rep-
resent 95% confidence intervals, while red arrows represent comparisons among the means.
Where a red arrow overlaps an arrow from another category, this means that the difference
between the overlapping categories is not significant. Angry Noise shows the lowest values
of each RQA metric, while Positive Chant (both games) and Negative Chant (Game 1) show
the highest values of each RQA metric. There is some degree of overlap among the nonchant
categories for all RQA metrics in both games, although the specific nonsignificant pairwise
comparisons differ between games. All pairwise comparisons are listed in Tables S1 and S2.
The pairwise comparison results indicate that among most RQA metrics, Positive Chant (and
Negative Chant in Game 1) is significantly different from other nonchant Crowd Sound Cat-
egories in both games. In Game 2, Distraction Noise is also significantly different from the
remaining nonchant categories on all recurrence metrics except for Applause for RR and DET.
Remaining differences in crowd sound category differ by recurrence measure (see Tables S1
and S2).

2.2.4. Preliminary discussion for Part 1
In Part 1, we took a theory-driven approach to describe crowd sound dynamics using a

set of four specific RQA metrics: Recurrence Rate, Determinism, Entropy, and Laminar-
ity as in Proksch et al. (2022). These metrics were chosen to describe patterns of acousti-
cal behavior from the crowd which repeat over time (RR), patterns that belong to a longer
sequence of behavior (DET), the amount of disorder in these sequences (ENT), and clusters
of acoustical behavior over a length of time (LAM). These four metrics are well studied in
the literature describing the dynamics of interpersonal coordination and acoustical behav-
ior (Fusaroli & Tylén, 2016; Paxton & Dale, 2013). We predicted that instances of whole-
crowd coordination (such as the coordinated acoustical patterns of specific chants) versus
locally coordinated activity (such as applause or cheer) versus noise-generating behavior
represent three distinct modes of acoustic patterning which would be observable in distinct
recurrence structures (from most to some to least, respectively). It was observed that the
whole-crowd acoustical coordination required for generating chants resulted in the highest
values overall across all RQA metrics. Pairwise comparisons demonstrate that these chant
categories are significantly different from most other categories of crowd sound. When com-
paring each category of crowd sound to the grand mean RQA values (i.e., when comparing
each category of crowd sound to the average acoustical behavior of the crowd throughout
the game), there was some variability in which crowd sounds were differentiable from that
average depending on RQA metric. Applause and Cheer were observed to not be significantly
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Table 6
Estimated marginal means

Recurrence Rate emmean SE df lower.CL upper.CL

Angry Noise 0.06 0.01 265 0.04 0.08
Applause 0.08 0.01 265 0.06 0.11
Cheer 0.10 0.01 265 0.08 0.11
Distraction Noise 0.07 0.01 265 0.06 0.08
Negative Chant 0.12 0.01 265 0.10 0.15
Positive Chant 0.17 0.01 265 0.16 0.18
Confidence level used: 0.95

Determinism emmean SE df lower.CL upper.CL

Angry Noise 0.25 0.04 265 0.17 0.33
Applause 0.37 0.04 265 0.29 0.45
Cheer 0.39 0.02 265 0.34 0.44
Distraction Noise 0.34 0.02 265 0.31 0.37
Negative Chant 0.52 0.04 265 0.44 0.61
Positive Chant 0.64 0.02 265 0.60 0.68
Confidence level used: 0.95

Entropy emmean SE df lower.CL upper.CL

Angry Noise 0.72 0.07 265 0.59 0.85
Applause 0.94 0.07 265 0.80 1.07
Cheer 0.96 0.04 265 0.89 1.04
Distraction Noise 0.92 0.03 265 0.87 0.97
Negative Chant 1.17 0.07 265 1.03 1.31
Positive Chant 1.32 0.03 265 1.26 1.39
Confidence level used: 0.95

Laminarity emmean SE df lower.CL upper.CL

Angry Noise 0.40 0.04 265 0.32 0.48
Applause 0.52 0.04 265 0.44 0.60
Cheer 0.51 0.02 265 0.47 0.56
Distraction Noise 0.45 0.01 265 0.42 0.48
Negative Chant 0.65 0.04 265 0.57 0.73
Positive Chant 0.75 0.02 265 0.71 0.79
Confidence level used: 0.95

Game 2
Recurrence Rate emmean SE df lower.CL upper.CL

Angry Noise 0.04 0.01 251 0.02 0.05
Applause 0.06 0.01 251 0.05 0.0730
Cheer 0.04 0.00 251 0.04 0.05
Distraction Noise 0.06 0.00 251 0.05 0.06
Positive Chant 0.10 0.00 251 0.09 0.10
Confidence level used: 0.95

(Continued)
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Table 6
(Continued)

Determinism emmean SE df lower.CL upper.CL

Angry Noise 0.15 0.04 251 0.08 0.22
Applause 0.28 0.03 251 0.23 0.34
Cheer 0.23 0.02 251 0.19 0.26
Distraction Noise 0.31 0.02 251 0.28 0.35
Positive Chant 0.60 0.02 251 0.56 0.64
Confidence level used: 0.95

Entropy emmean SE df lower.CL upper.CL
Angry Noise 0.56 0.08 251 0.41 0.72
Applause 0.74 0.07 251 0.62 0.87
Cheer 0.77 0.04 251 0.70 0.85
Distraction Noise 0.98 0.04 251 0.90 1.05
Positive Chant 1.39 0.04 251 1.30 1.47
Confidence level used: 0.95

Laminarity emmean SE df lower.CL upper.CL

Angry Noise 0.24 0.04 251 0.17 0.31
Applause 0.42 0.03 251 0.37 0.48
Cheer 0.32 0.02 251 0.28 0.35
Distraction Noise 0.28 0.02 251 0.25 0.31
Positive Chant 0.72 0.02 251 0.68 0.76
Confidence level used: 0.95

differentiated from average crowd sound dynamics in Game 1 (as well as Negative Chant, but
only for RR); Applause was observed to not be significantly differentiated from average crowd
sound dynamics in Game 2 across all categories, as well as Distraction Noise for RR and
DET.

Overall, the linear regression and pairwise comparison results support the hypothesis that
chant categories will exhibit more coordination than non-chant categories, as observed by
larger positive deviations from the grand average of each RQA metric for chant categories,
and significant differences from other categories in pairwise comparisons. This is predicted
because chanting requires coordination among the crowd as a whole to produce distinguish-
able acoustic patterns. However, the prediction that there may be differences in cheering and
applause when compared to the noise categories is not strongly supported from these analy-
ses. It was predicted that cheering/applause, which involve local coordination with individuals
nearby, would show less recurrence than chant but more than distraction or angry noise, which
produces noise with little structured variability in the acoustic signal. Indeed, applause and
cheer appear to be near to the global average coordination dynamics of a crowd throughout a
game. It appears from these analyses that, although there are strong differences between chant
and other categories, there may not be a strong difference between cheering/applause and dis-
traction/angry noise—distraction noise significantly differed from other nonchant categories
only for Game 2. Thus, it remains unclear whether RQA metrics reflect three distinct modes
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of acoustic patterning (from most coordination in chant categories, to some in applause/cheer,
to least in noise categories), or perhaps two modes: chant categories with the most recurrent
structures and nonchant categories with the least.

3. Part 2: SVM classification with RQA features

The objective in Part 2 was to use a data-driven approach to explore the usefulness of the
full suite of all 19 RQA metrics computed by PyRQA as features for the classification of dif-
ferent crowd sounds. As stated previously, we predict that the machine learning analysis will
show that RQA features can clearly distinguish between the acoustic patterns that correspond
to chanting versus cheering versus distracting when applied to unseen data. This hypothesis
addresses a separate question from Part 1, which sought primarily to describe the acousti-
cal crowd sound dynamics observed in these two basketball games. The question now for
Part 2 is whether the correct crowd sound category can be predicted from RQA features alone.
That is, if RQA features showing higher recurrence rate, determinism, entropy, and laminarity
(reflecting higher percentages of recurring behavior; more stable sequences of behavior; more
variation in possible sequences of behavior; and increased clustering of behavioral states,
respectively) correlate to instances of strong coordination and synchronization within the
crowd, then the classifier should be able to accurately label new, unseen instances with high
RQA values as chant behavior. If intermediate values of these RQA features correlate with
instances of intermittent coordination, then the classifier should be able to accurately label
new, unseen instances as applause or cheering. Finally, if the lowest RQA values correlate
with instances of inhibited synchronization, then the classifier should be able to accurately
label new, unseen instances with the lowest RQA values as noise.

3.1. Training, validation, and testing samples

The preprocessing steps for Part 2 were identical to those in Part 1. That is, the audio
signal was resampled from 50 to 5 kHz. However, as we will describe below, we used sliding
windows to extract samples from this audio signal across the entire length of each crowd
sound event (in contrast to nonoverlapping windows in Part 1). This allowed us to create a
larger data set for training the classifier.

For each crowd sound event, 5-s samples were extracted sliding by 1-s windows at a time.
This means a 7-s crowd event can generate three samples instead of a singular sample while
discarding the remaining 2 s. In order to prevent over fitting, we used disjoint events for
each class in the training, validation, and test sets. That is, we ensured that if any samples
from a unique crowd sound event were contained in the training set, no other samples
from this event were contained in either the validation or testing sets. This assures that any
success in classification performance cannot be due to the similarity between two consecutive
samples within the same crowd sound event. As is standard in machine learning practice,
we bootstrapped samples in the training set (oversampling the minority classes) until each
class had 281 samples in Game 1, and 171 samples in Game 2. This method of oversampling
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allows us to address bias in parameter estimates for minority classes and minimizes any error
in classification due to unbalanced classes (Mohammed, Rawashdeh, & Abdullah, 2020).
Testing and validation samples were not bootstrapped.

3.2. Recurrence quantification analysis

RQA was run on the time series data extracted from the resampled audio independently for
each of these 5-s samples using identical parameters as listed in Part 1, Section 2.1. However,
while statistical analysis in Part 1 focused on four RQA metrics commonly studied in behav-
ioral experiments of human interaction, the training and classification for Part 2 was computed
on all 19 RQA metrics reported by PyRQA and listed below (Rawald et al., 2017):

• Minimum diagonal line length • Longest vertical line length

• Maximum diagonal line length • Entropy vertical lines

• Minimum white vertical line length • Average white vertical line length

• Recurrence rate

• Determinism
• Longest white vertical line length

• Average diagonal line length

• Longest diagonal line length
• Longest white vertical line length divergence

• Divergence • Entropy white vertical lines

• Entropy diagonal lines • Ratio determinism/recurrence rate

• Laminarity

• Trapping time • Ratio laminarity/determinism

3.3. SVM classification

To perform classification, we utilized an SVM classifier with an radial basis function (RBF)
kernel. The SVM classifier partitions the n-dimensional feature space (in our case n = 19)
using hyperplanes to best distinguish the data based on class. When trained on the training
set, the SVM classifier learns the optimal hyperplanes (or decision boundaries) to separate
different classes of data based on their features. In this case, separating samples of crowd
sound based on their RQA features and associated category labels. The SVM separates the
classes by maximizing the distance between the hyperplanes and opposing classes. That is, by
creating the largest possible gap between the categories of crowd sound. Once the classifier
has learned these categories from the training set, we can introduce new, unseen test data.
When shown a sample from the new test data, the SVM classifies the new sample based on
the partition it belongs to.

In this analysis, we look at two different classification problems. In the first problem, we
look at 19 RQA metrics over the six and five crowd sound classes defined in the analysis:
angry noise, distraction noise, positive chant, negative chant (for Game 1 only), cheer,
and applause. We also looked at a second classification problem to further probe our orig-
inal hypothesis predicting three distinct coordination modes. If there are three distinct
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Table 7
Overlapping 5-s samples used for RQA and SVM classification

# of samples

Crowd Sound Category Game 1 Game 2

Angry Noise 37 31 (smallest class)
Applause 19 (smallest class) 36
Cheer 97 155
Distraction Noise 281 (largest class) 171 (largest class)
Negative Chant 26 0
Positive Chant 142 144

Table 8
Overlapping 5-s samples used for SVM classification after combining crowd sound classes

# of samples

Conglomerated Category Game 1 Game 2

Applause/Cheer 116 191
Distraction Noise 281 171
Chant 168 144

coordination modes—strong coordination, intermittent coordination, and inhibited
coordination—rather than six and five distinct coordination modes corresponding to the
six and five manually labeled categories of both games, then we should observe improved
classification (minimal confusion) between these three coordination categories. We combined
crowd sound classes that showed a similar performance in the SVM classifier (trained on
all 19 RQA metrics), and that showed an overlap in the original means comparisons of
the subset of four theoretically motivated RQA metrics described in Section 2. Thus, we
combined positive/negative chant into a singular chant class, cheer/applause into a singular
cheer class, and kept distraction noise in a class by itself. We excluded angry noise from the
conglomerated classes due to comparatively low prevalence in the data.

Table 7 lists the distribution of samples in the training set in each of the six original
classes. Training samples were bootstrapped (oversampling the minority classes—a com-
monly accepted practice in machine learning to minimize error in classification due to unbal-
anced classes (Mohammed et al., 2020)), so each class has 281 samples for Game 1 and 171
samples for Game 2. Validation and testing samples were not bootstrapped.

Table 8 lists the distribution of samples in the training set by conglomerated class. As
above, training samples were bootstrapped (oversampling the minority classes), so each class
has 281 samples for Game 1 and 191 samples for Game 2. Testing samples were not boot-
strapped.

3.4. Classification results

Results of the SVM classifier performance on the test set data are displayed in the confusion
matrices in Fig. 6. Here, we have the true label on the y axis and the predicted label on the
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Fig. 6. SVM test set results for Game 1 (top) and Game 2 (bottom). Angry Noise was excluded from the three-class
model. Applause/Cheer were combined into a single Cheer category. Positive and Negative Chant were combined
into a single Chant category for Game 1. There were no instances of Negative Chant in Game 2. Three-class
SVM results correspond to three proposed coordination modes: least coordinated (distraction noise), somewhat
coordinated (cheer/applause), and most coordinated (positive and negative chant).

x axis. The values have been normalized across the true label, since each class contains a
different number of samples because we did not bootstrap the test set. When analyzing the
results of the SVM trained on six classes of data from Game 1 (Fig. 6A), we see strong
distinction (above 0.8) for angry noise, distraction noise, positive chant, and cheer. We see
confusions for applause with mis-classifications split between cheer and angry noise. We
also see significant confusion for negative chant with a sizeable portion being classified as
positive chant. When analyzing the results of the SVM trained on six classes of data from
Game 2 (Fig. 6C), we see strong distinction (0.8 or above) for positive chant and cheer,
with distraction noise close behind (0.79). We see confusions for angry noise and applause
with mis-classification for each-other, and slight confusion for distraction noise with mis-
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classification as angry noise. This indicates that crowd sound behavior in Game 2, compared
to Game 1, may have been less distinct across categories.

Given our theoretical hypothesis of three distinct behavioral modes (most coordinated,
somewhat coordinated, and least coordinated) and the overlap in expected marginal means
from statistical analysis performed earlier, we joined classes into three subgroups: chant
(most coordinated), cheer/applause (somewhat coordinated), and distraction noise (least coor-
dinated). When we train an SVM classifier on these joined classes, we see performance above
0.8 for all classes in both Game 1 (Fig. 6B) and Game 2 (Fig. 6D), with stronger performance
for classifying cheer and chant compared to distraction noise in Game 1, and stronger perfor-
mance for classifying chant and distraction noise than cheer in Game 2. This indicates that the
features generated by RQA are useful in predicting among broad crowd sound categories that
correspond roughly to three coordination modes in classification of unseen crowd sound data.

4. Discussion

In this project, we sought to expand the application of nonlinear analysis techniques to
naturalistic collective human interaction. Much work has been done to study the dynamics
of human interaction in a variety of modalities, usually with the ability to record multiple
signals that are generated by and recorded from each individual within a collective group
(c.f. Baranowski-Pinto et al., 2022; Swarbrick et al., 2019; Gordon et al., 2020; Høffding
et al., 2023). However, the ability to study human interaction in a greater variety of real-
world, ecological settings can be hindered by this need to record individual-level signals.
Proksch et al. (2022) demonstrated the feasibility of applying nonlinear analysis techniques
to real-world social interactions that were recorded in the form of a single global-audio sig-
nal. This work showed that two coordination regimes (uncoordinated and coordinated) can
be reliably differentiated using RQA. Here, we extend that previous work to a less scripted
social interaction demonstrating a wider variety of interpersonal coordination regimes—the
acoustical interaction of a crowd at a basketball game. To that end, we applied RQA to crowd
sounds recorded from the student section of two basketball games and labeled according to a
set of crowd sound categories.

We hypothesized that we would observe three overall coordination modes in the acousti-
cal behavior of crowds attending a basketball game. Chanting behavior requires whole-crowd
coordination to produce specific words for semi-rehearsed chants, and would exhibit the high-
est levels of coordination. Cheering and applause involves locally coordinated patterns of
clapping or vocalizing within an individual’s earshot and eyeshot, but this behavior will vary
across the crowd as a whole, resulting in some coordination, but less than chanting. Finally,
noise-making behaviors generated by a crowd in an effort to distract players on the court will
result in little structured variability in the acoustic signal, and will exhibit the lowest level
of coordination.

We hypothesized that these coordination modes would be reflected in nonlinear RQA met-
rics which measure the recurrence of behavior over time (Recurrence Rate), sequences of
behavior over time (Determinism), variation in these sequences (Entropy), and revisiting the
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same behavioral states in time (Laminarity). Initial statistical analysis of RQA metrics pre-
viously used to study acoustical coordination of a large interacting group (Recurrence Rate,
Determinism, Entropy, and Laminarity, c.f. Proksch et al., 2022) indicate that chant categories
do indeed exhibit higher RQA metrics than other categories of acoustical crowd behavior.
However, it is less clear from these analyses whether there are distinct semi-coordinated and
low-coordinated categories of acoustical crowd behavior, or merely two overarching cate-
gories for coordinated and relatively uncoordinated behavior.

In addition to the descriptive question asked in Part 1, we asked a practical question of
whether unseen samples of crowd sound could be reliably predicted as belonging to dis-
tinct crowd sound categories in Part 2. Across the 6 and 5 labeled categories, we again
observed chant categories being the most accurately predicted. However, dividing classes into
three categories representing the most (chant), some (applause/cheer), and least (distraction
noise) coordinated acoustical behavior did result in a high classification accuracy (above 0.8)
across the three coordination modes.

The results here and from Proksch et al. (2022) indicate that RQA (and phase space
reconstruction) can be meaningfully applied to global acoustic recordings when individual
recordings are not available. Resulting RQA metrics reflect specific coordination modes
hypothesized to exist in the crowd, from the most coordination/synchronization in instances
of chanting to the least synchronization in instances of noise. The collegiate basketball crowd
sound data sets analyzed here are exemplars of naturalistic crowd interactions that are not
dictated by a set of predetermined instructions, like in a musical score. While crowd behavior
is influenced by the events of the basketball game over time, the specific acoustic output
of the crowd is neither rehearsed nor explicitly dictated via shared access to a “behavioral
score.” Instead, individuals of the crowd “softly assemble” into certain functional patterns
acoustic of behavior, which emerge from local interactions among fans and are influenced
by external events of the environment. Further, we have demonstrated that a combination of
RQA and SVM classifier can effectively differentiate between at least a subset of acoustic
crowd responses. Future research involving classification of acoustic crowd behavior can
test whether classification accuracy of SVMs, Naive Bayes Classifiers, or even Convolu-
tional Neural Networks—which are typically trained on more standard measures of acoustic
analysis (such as spectral features and mel cepstral coefficients)—may be improved by
incorporating numerical RQA metrics or even Recurrence Plot images into the classification.

This work adds to the growing body of research on joint action and coordination among
groups, and the need to combine methods from both coordination dynamics and dynamical
systems (Schiavio et al., 2022). We discussed a collection of studies examining physiological
and behavioral synchrony arising from group interaction through the analysis of individual
signals from members of interacting groups. Baranowski-Pinto et al. (2022) found heart-
rate interdependence between fans attending live (vs. televised) basketball games, but did
not measure the synchrony in behavioral (i.e., movement or acoustic) dynamics. Swarbrick
et al. (2019) demonstrated that movement vigor and engagement was enhanced by attend-
ing a live concert compared to a prerecorded concert, but did not analyze the coordination
in these dynamics between audience members. And Gordon et al. (2020) demonstrated an
independence between behavioral and physiological synchrony—such that physiological and
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behavioral synchrony are not always coordinated. Going forward, we argue that incorporating
analysis of coordination measured from global acoustical signals (as shown in our work) to
group interaction studies such as these will help shed light on the role of acoustical behavior in
joint action, and whether that role is meaningfully correlated with movement, physiological,
and psychological dynamics.

To conclude, we sought to describe emergent coordination dynamics in the acoustical
behavior of a crowd in a naturalistic setting. We presented a case study of acoustical behavior
of a crowd at two collegiate men’s basketball games. Specifically, we performed phase space
reconstruction and RQA on acoustic data recorded from fans attending the two basketball
games. While there was an overlap in some categories, we found reliable differences in recur-
rence measures after SVM classification for three conglomerated categories of crowd activity
(i.e., chant [most coordinated], cheer [somewhat coordinated], and distraction noise [least
coordinated]). There is likely substantial individual variability between basketball games in
part dependent on variables, such as type of game (Men’s vs. Women’s game), attendance,
team performance, and even within a specific game between halves or between specific plays.
Further research should include data from a larger variety of basketball games to evaluate
any trends in basketball crowd behavior overall, and to evaluate differences based on these
listed variables. In the future, it would be beneficial to analyze how these recurrence measures
extend to additional basketball games or to acoustical behavior of crowds at different sporting
events. Analyzing these signals over the time course of a game may shed light into how joint
acoustical behavior changes over time. Further, it would be insightful to relate these acous-
tical behavioral dynamics with coordination dynamics across modalities. The presentation
of the case study and extension of dynamical systems methods presented here will enhance
research into the acoustical behavior of large group interpersonal coordination—particularly
when researchers lack access to record and analyze individual-level signals.
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2021). Here, we sought to proactively consider choosing references that reflect the diversity
of the field in thought, form of contribution, gender, race, ethnicity, and other factors. First, we
obtained the predicted gender of the first and last author of each reference by using databases
that store the probability of a first name being carried by a woman (Dworkin et al., 2020; Zhou
et al., 2020). By this measure (and excluding self-citations to the first and last authors of our
current paper), our references contain 4.55% woman(first)/woman(last), 11.36% man/woman,
25.87% woman/man, and 58.23% man/man. This method is limited in that (a) names, pro-
nouns, and social media profiles used to construct the databases may not, in every case, be
indicative of gender identity and (b) it cannot account for intersex, non-binary, or transgen-
der people. Second, we obtained predicted racial/ethnic category of the first and last author
of each reference by databases that store the probability of a first and last name being car-
ried by an author of color (Ambekar, Ward, Mohammed, Male, & Skiena, 2009; Sood &
Laohaprapanon, 2018). By this measure (and excluding self-citations), our references con-
tain 14.53% author of color (first)/author of color (last), 12.31% white author/author of color,
19.09% author of color/white author, and 54.08% white author/white author. This method is
limited in that (a) names and Florida Voter Data to make the predictions may not be indicative
of racial/ethnic identity, and (b) it cannot account for Indigenous and mixed-race authors, or
those who may face differential biases due to the ambiguous racialization or ethnicization of
their names. We look forward to future work that could help us to better understand how to
support equitable practices in science.

Open Research Badges

This article has earned Open Data and Open Materials badges. Data and materials
are available at https://osf.io/t2shj/?view_only=db68b2d885ab4fc68956340cb2ac8617
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Supporting Information

Additional supporting information may be found
online in the Supporting Information section at the end
of the article.

Table S1: Pairwise comparison results for Game 1
Table S2: Pairwise comparison results for Game 2
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