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We address the complex relationship between the stability, variability, and adaptability of psychological
systems by decomposing the global variance of serial performance into two independent parts: the local
variance (LV) and the serial correlation structure. For two time series with equal LV, the presence of
persistent long-range correlations (or 1/f � noise) increases the global variance. We hypothesized that a
coadjustment between these two determinants of variability constitutes a resource for adaptive systems
whose appropriate functioning under critical conditions requires the outcome variance to be limited. To
test this hypothesis, we looked at the bimanual coordination dynamics at comfortable (stable) and critical
(close to phase transition) frequencies. Results showed that a negative correlation appeared gradually as
the theoretical stability of coordination modes decreased and reached significance only in the critical
condition. We propose that the emergence of a mutual adjustment between LV and serial correlations
might be an indicator of effective adaptation to stabilize behavior.
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Stability, variability, and adaptability are three highly entangled
notions bringing interaction between the statistical and functional
levels of assessment of the dynamics of a given system and its
behavior over time. Understanding the relationship between these
concepts constitutes a key issue in research on complex biological
systems in fields like human motor control and performance. In the
present study, we propose to address this issue by decomposing the
notion of variability into two essentially independent ingredients:
the local variance (i.e., the variance of increments between the
successive states of the variable) and the structure of serial corre-
lations (i.e. the way these increments are arranged over time). We
use the framework of bimanual coordination dynamics to provide
the experimental basis to test the relationship between local vari-
ance and serial correlations.
Stability can be specified either by the property of a system to

resist changes, that is, to exhibit minimal variation while facing
changing conditions, or by its ability to recover a state of equilib-
rium after perturbation. We refer to the invariant performance of a
system in the wake of varying conditions as static stability. This
may be contrasted with a dynamic form of stability, which refers
to reproducible and predictable patterns of changes in the system’s
functioning under varying internal or external constraints. While
static stability implies that the variables determining the system’s

state are maintained within a limited range, the dynamic definition
allows the stability of some global behavior to be maintained by
changing states of the system (Ahn, Tewari, Poon, & Phillips,
2006).
A general assumption is that enhanced variability of a given

behavior reflects its reduced stability. Therefore, behavioral sta-
bility has often been appropriately inferred from the observation of
small variance. However, even though stability and variability (as
assessed by basic Gaussian statistics) are obviously two related
aspects, the invariant nature of this relationship is arguable. One
may intuitively wonder, for instance, which of the following two
behaviors should be termed “more stable”: the behavior that ex-
hibits the smallest fluctuations or the behavior that is perpetuated
in spite of maximal variability (e.g., Riley & Turvey, 2002).
Whenever we study a system that is governed by any external

constraints, the issue of behavioral stability raises the notion of
adaptability, i.e. the capacity of a system to react and comply with
the constraints without breaking down or exhibiting any significant
decline in behavior given the requirements of the situation/task.
But restoring congruence between the system’s organization or
functioning and the environmental constraints in order to recover
a stable state is only possible when the system has sufficient
resources of variability to draw from. While this appears obvious
when considering the dynamic form of stability, it is also true for
static stability. Observing invariants in performance under chang-
ing environmental constraints does not always mean that the
underlying organization of the system has not (been) varied to
achieve a stable performance. Thus, when dealing with (self-
controlling/organizing) open systems, the notion of adaptability
might be considered a generalization of the notion of stability.
At this point, the relationship between variability and stability

becomes even trickier since, due to adaptability, the behavior that
is functionally the most stable is clearly not necessarily the less
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variable. Good examples have indeed been provided by a body of
studies on heart rate variability with aging and disease (e.g.,
Goldberger et al., 2002; Iyengar, Peng, Morin, Goldberger, &
Lipsitz, 1996; Saeed, 2005). Displaying several examples of heart
rate time series, Goldberger et al. (2002) notably showed that the
series that exhibited the smallest variability were associated with
patients with severe heart failures while the most variable and
weakly stationary series were recorded from healthy individuals.
At the same time, those studies showed the structure of serial
correlations in the heart rate time series were a better indicator for
health or dysfunction than just the magnitude of the fluctuations.
Actually, healthy heartbeat fluctuations exhibited persistent long-
range correlations (1/f � noise). This specific correlation structure
was altered either towards uncorrelated white noise or excessive
periodicity in patient populations.

A Short Review of 1/f � Noise and Variability in
Biological Systems

Most natural time series exhibit some form of serial correlations,
especially fractal temporal structures (Bassingthwaighte, Liebo-
vitch, & West, 1994; Newell & Slifkin, 1998; West, 2006). The
continuum of fractal processes can typically be defined by spectral
indexes � ranging from �1 to 3 (see Eke et al., 2000, for details).
More specifically, 1/f � noise denotes a particular form of serial
correlations, situated at the frontier between fractional Gaussian
noises (fGn, i.e. stationary series) for �1 � � � 1, and fractional
Brownian motions (fBm, i.e. nonstationary series) for 1 � � � 3.
Within the fGn family, in particular, one can moreover distinguish
between antipersistent (negatively correlated) and persistent (pos-
itively correlated) processes for �1 � � � 0 and 0 � � � 1,
respectively (white noise corresponding to � � 0). Persistent fGns
are long-range correlated, which basically means that the series
auto-correlation function exhibits a slow asymptotic decay follow-
ing a power function C(k)� �k ��� (where 0� � � 1 at lags k, and
� and � are related through the Wiener-Khintchine theorem),
instead of the typical exponential decay of short-range correlations
(e.g., ARMA processes). Of particular importance to our present
concerns is that 1/f �-series are characterized by persistent long-
range correlations, the strength of which increases as � tends
towards 1.
Clinical approaches, such as those mentioned above, and re-

search on human motor behavior (e.g., Chen, Ding, & Kelso, 1997;
Delignières, Torre, & Lemoine, 2008; Jordan, Challis, Cusumano,
& Newell, 2009; Hausdorff, Peng, Ladin, Wei, & Goldberger,
1995; Wijnants, Bosman, Hasselman, Cox, & Van Orden, 2009)
and cognition (e.g, Gilden, 2001; Gilden, Thornton, & Mallon,
1995; Holden, Van Orden, & Turvey, 2009; Kello, Beltz, Holden,
& Van Orden, 2007; Van Orden, Holden, & Turvey, 2003) have
contributed to ground the postulate that 1/f � noise is the typical
statistical outcome of complex systems under normal functioning
conditions. This structure might break down with aging, disease, or
any extrinsic constraint perturbing the system (Gilden & Hancock,
2007; Hausdorff et al., 1997; Lipstiz & Goldberger, 1992; Peng et
al., 2002; Van Orden, 2007). 1/f � noise has commonly been
considered as reflecting the adaptive capacity of systems under
various constraints, by warranting an optimal compromise between
stability and variability.

It, therefore, seems reasonable to consider that the relation
between stability and variability may be mediated by the temporal
structure of fluctuations (Jordan et al., 2009). A comprehensive
view of both aspects of variability (local and serial) to address
behavioral stability is both timely and warranted.

Looking at the Interplay Between the Magnitude and
the Correlation Structure of Variability

Two time series, which are similar with regard to their Gaussian
statistics, can actually contain very different correlation structures
and are, therefore, likely to be generated by different organizations
of the underlying processes. This assertion is a common argument
to emphasize the importance of a time series approach to complex
systems (Hausdorff et al., 1997; Newell & Slifkin, 1998; Riley &
Turvey, 2002; Slifkin & Newell, 1998). However, the possibility
of series with different forms of correlation but same variance does
not necessarily imply that the serial correlation properties may not
have any effect on variance. It is important to take into account that
the serial (long-range) correlation properties are likely to affect the
series global variance (Gilden, 2001; Madison, 2001). Conse-
quently, one can argue that variance is not an appropriate statistic
for separately assessing the correlation structure and the magnitude
of variability.
A solution for a separate assessment of the magnitude of vari-

ability and serial correlations is to consider the local variance (LV)
of the series. We determined LV as the variance of the series of
increments Ii (i.e., the differenced series) composing the original
series Xi. Note that an alternative estimate can be obtained by
computing the sum of the squared differences between adjacent
values, divided by the number of differences (minus one):

LV �

�
i�2

N

�Xi � Xi�1�
2

�N � 1� � 1
(1)

This equation gives a measure of variance based on local dif-
ferences between data points (Madison, Forsman, Blom, Kara-
banov, & Ullén, 2009), which converges toward the variance of
increments for sufficiently long series. Similar measures of local
variability, based on the analysis of differences between adjacent
values, have been proposed in the literature (Collier & Ogden,
2004; Delignières, Fortes, & Ninot, 2004; Madison et al., 2009;
Ogden & Collier, 2002). Despite some algorithmic divergences,
these estimates all provide equivalent measures of the local vari-
ability of the series, in terms of variance or standard deviation. The
advantage of LV is to provide an index of the magnitude of local
fluctuations in the series, independently of the fluctuations gener-
ated by serial correlations. While the variance of a series is
codetermined by LV and serial correlations, the latter two are
independent by nature. Thus, a given pattern of serial correlation
can demonstrate different magnitudes of LV and, conversely,
similar LVs can underlie very different correlations structures.
As the relationship between LV and the serial correlation struc-

ture will be a key issue in this study, we elaborate on their
independence further. Consider two series of increments I1 and I2

equal in mean and variance. Integration of the two series of
increments gives the series of successive values of the correspond-
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ing variables X1 and X2. If X1 contains antipersistent fractional
Gaussian noise (negative correlations between successive values,
meaning that a positive increment is most likely to be followed by
a negative increment) and X2 contains persistent fractional Gauss-
ian noise (positive long-range correlations between the successive
values, meaning that a positive increment is most likely to be
followed by another positive increment), then the global variance
of X2 will be higher than the variance of X1, and the probability for
the variables to attain or exceed a given limit value is higher for X2

than for X1. Figure 1 illustrates this relationship between the
increments composing a series, the nature of correlations between
the increments, and the global variance of the series.
Note that one could argue on a formal basis that there is a

relationship between the series LV and the correlation structure. In
fact, the LV (Equation 1) corresponds to half the value of the series
lag-1 variogram (V(1)), which is defined for all lags k 	 0 by:

V�k� �
E�Xi � Xi
k�

2

2
. (2)

It can be demonstrated that for all k, V(k) equals the variance of
the series minus the lag-k auto-covariance (Beran, 1994):

V�k� � VAR�X� � ��k�; (3)

Then, for k � 1:

LV �
VAR�X� � ��1�

2
. (4)

Thus, this equation suggests that the LV is dependent on the
correlation structure of the time series. Indeed, a strong negative
correlation exists between the LV and the lag-one auto-covariance
in a set of simulated series with fixed variance. It is important to
note, however, that the variance cannot be assumed to be fixed
across a set of experimental series, and equation 4 simply shows
that the global variance of series can be expressed as the linear
combination of the LV and the lag-one auto-covariance, which
both can vary independently:

VAR�X� � 2LV � ��1�. (5)

Figure 1. Top graphs: series of increments obtained after differentiation of series of anti-persistent fGn (left)
and persistent fGn, or 1/f � noise (right). The series were subsequently normalized to obtain increments with
equal variance. Bottom graphs: new series of anti-persistent fGn and 1/f � noise obtained after re-integration of
the series of increments; the new series are rescaled with respect to the original series. Despite the series of
increments being equal in mean and variance, their different arrangement over time, i.e. the different structures
of serial correlations in the outcome (integrated) series cause different global variances: persistent long-range
correlations yield a higher global variance in series.
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To provide additional support for the independence between the
series LV and correlation structure and to illustrate the respective
influences of these two properties of variability on the global
variance of the time series, we generated 200 synthetic series
varying the LV and the structure of correlations. The simulation
results presented in Table 1 show that both factors affect the series
global variability while being mutually independent.
Now consider that the variables X1 and X2 describe the behavior

of a system that must stay within given limits to not break down
and continue functioning successfully. It becomes evident that
some forms of serial correlation, as for example antipersistent fGn,
allow the system to “tolerate” a higher variability between the
successive states of behavior than persistent fGn does. Generally
speaking, the stronger the persistence of correlations, the smaller
the tolerable variability between successive behavioral states (and
vice versa).
From a mathematical point of view, LV and serial correlations

are independent dimensions of a series. Then, what would it mean
to observe a correlation between these two dimensions? A positive
correlation between the degree of persistence of serial correlation
and LV would straightforwardly augment the series variance and
push the variable near extreme values. A negative correlation, in
contrast, would have a “conservative” effect, containing the series
variance and maintaining the variable within its initial boundaries.
Then, the interplay between the LV and serial correlations pro-
vides the system with a potential degree of freedom to adapt to
nonoptimal functioning conditions where the outcome variance
needs to be contained. Taking it a step further, no correlation
between the LV and serial correlations should be found under
unconstrained functioning conditions that enable the system to
maintain the target behavior without the need to contain the
outcome variability. In contrast, under conditions requiring the
system to contain the outcome variability and avoid the required
behavior to break down, the emergence of a negative correlation
between the LV and the persistence of serial correlations may
indicate the presence of adaptive processes.

The Framework of Bimanual Coordination Dynamics

To test our present hypothesis, the rhythmic bimanual coordi-
nation paradigm (Kelso, 1995) provides a very useful experimental
framework in four ways: a) it is attached to strongly established
theoretical models for the intrinsic stabilities of coordination dy-
namics provided by the dynamical systems approach (Haken,
Kelso, & Bunz, 1985); b) fluctuations have been shown to play a
significant role in coordination dynamics, contributing to the qual-
itative change in the coordinative behavior (Collins, Park, &
Turvey, 1998; Kelso, 1984; Kelso, Schöner, Scholz, & Haken,
1987; Schöner, Haken, & Kelso, 1986); c) fluctuations in produced
relative phase series have been shown to contain 1/f � correlations
(Torre & Delignières, 2008; Torre, Delignières, & Lemoine,
2007); and d) it offers a straightforward way to assess behavior in
different stable or critical conditions of performance, determined
individually.
When performing bimanual coordinated oscillations, partici-

pants are spontaneously able to produce two stable spatio-temporal
relationships between the limbs: in-phase and anti-phase coordi-
nation. These stability regimes are the attractors of bimanual
coordination dynamics, defined by the collective variable relative T
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phase (�) centered on 0° and 180°, respectively. While the coor-
dinative system is intrinsically bistable at low movement frequen-
cies, it is monostable beyond a critical oscillation frequency, as the
relative stability of the anti-phase coordination decreases with
increasing frequency until complete disappearance of the attractor.
These essential properties of bimanual coordination dynamics
have been formalized by the HKB- (Haken et al., 1985) potential
function (V), which represents the stability of coordination as a
function of the target relative phase and the movement frequency:

V��� � � acos ��� � bcos �2��, (6)

where an increase in the ratio k � b/a is related to an increase
in the required oscillations frequency. The minima in V(�) repre-
sent the attractive patterns. Because of the differential stabilities of
in-phase and anti-phase, bimanual coordination dynamics typically
shows a nonlinear phase transition: incremental protocols driving
participants through gradually increasing oscillation frequencies
provided empirical evidence for the breaking down of anti-phase
coordination and the abrupt spontaneous switch to in-phase at
individual critical frequencies. This transition is announced by a
critical increase in the fluctuations of relative phase (Kelso,
Scholz, & Schöner, 1986).
The magnitude of fluctuations has been considered tightly re-

lated to the occurrence of phase transition. As the anti-phase
attractor basin disappears gradually, fluctuations are likely to con-
tribute towards phase transition by pushing the coordinative be-
havior beyond the limits of the stability zone. The variance of
produced series of relative phase has generally been taken as an
appropriate indicator of the stability of the coordinative system
under various extrinsic or intrinsic constraints. (For an alternative
approach to coordination stability using Recurrence Quantification
Analysis for a separate estimation of the strength of attraction of
the coordination pattern and the noise inherent in the system, see
for example Kudo, Park, Key, & Turvey, 2006; Pellecchia, Shock-
ley, & Turvey, 2005; Richardson, Schmidt, & Kay, 2007; Shock-
ley & Turvey, 2006).
Other work focusing on the structure of serial correlation rather

than the magnitude of fluctuations has shown that the series of
relative phase in bimanual coordination contain persistent long-
range correlations, or 1/f � noise (Torre, 2010; Torre & Delig-
nières, 2008; Torre et al., 2007), instead of varying randomly over
time. In particular, Torre (2010) found a negative correlation
between the movement frequency at which the participants
switched from anti-phase to in-phase coordination and the strength
of the long-range correlations in the relative phase series produced.
This result highlights that there may indeed be a relationship
between the stability of bimanual coordination and the long-range
correlation properties observed. However, the respective roles and
functional interrelations between serial correlation properties and
the magnitude of fluctuations remain to be uncovered. By exam-
ining how these two properties of variability may work hand in
hand in a system in the conditions of stable and intrinsically
unstable performance, the present paper will contribute to concep-
tual advances on the relationship between stability, variability, and
adaptability in behavior.
In sum, the bimanual coordination paradigm serves as an ap-

propriate experimental vehicle to address the issues under consid-
eration. Specifying our above hypotheses with regard to the bi-
manual coordination framework yields the following predictions:

we expect to find no correlation between the LV and the persis-
tence of long-range correlations in the series of relative phase
produced in the intrinsically stable coordination regimes, as in
in-phase and anti-phase at sub-critical oscillation frequency. In
contrast, a negative correlation between the series LV and the
persistence of correlations should be observed in anti-phase coor-
dination at a critical frequency, where the variability of relative
phase needs to be contained for avoiding phase transition and
maintaining the required coordination pattern.

Methods

Participants and Device

Fourteen young adults (4 female, 10 male) took part in the
experiment. Twelve participants declared themselves right-
handed, and two left-handed. None of them declared any neuro-
logical or recent upper-limb injury. They had no extensive practice
in music and declared no particular competence involving specific
upper-limb coordination. Participants signed a written consent and
were not paid for their participation; the experimental procedures
were approved by the local institutional review board (Montpellier
1 University). Please note that a part of the dataset collected from
the experiment has been used in a recent publication (Torre, 2010).
Participants were comfortably seated with their elbows sup-

ported on each side of the body. They performed bimanual forearm
(pronation/supination) oscillations holding two 15-cm joysticks
with a single degree of freedom in the frontal plane. The positions
of the joysticks were adjusted to each participant so that his/her
forearms rested in a horizontal position while performing the task.
Potentiometers located at the axes of the joysticks allowed mea-
suring their angular displacement, and data were collected using a
Nanologger (Digimétrie, Perpignan, France) analog interface with
a sampling frequency of 500 Hz. A PC-driven auditory metronome
was used to pace the oscillations.

Task and Procedure

The task consisted in performing bimanual coordinated oscilla-
tions following the tempo imposed by the metronome. Participants
had to perform one complete oscillation cycle within the metro-
nome period, starting with maximal pronation on the beep. The
amplitude of oscillations was of approximately 45° on each side of
the vertical axis. The bimanual oscillations were performed either
in in-phase or anti-phase coordination.
There were two parts to the experiment. The first part was

designed to determine the individual transition frequencies (fT) for
each participant. Therefore, participants performed 10 trials fol-
lowing a classical incremental protocol driven by the metronome:
the starting frequency was of 1 Hz and successively incremented
by 0.2 Hz, with plateaus of 10 s. Participants started each trial in
anti-phase coordination and maintained this pattern until the oc-
currence of the spontaneous transition to the in-phase coordination.
They were instructed to make no effort to maintain anti-phase
coordination when they felt themselves about to switch to in-
phase. For each participant, the individual fT was determined as the
median of the 10 observed transition frequencies.
In the second part of the experiment, participants performed

bimanual oscillations in four conditions: a) in-phase coordination
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at individual comfortable oscillation frequency (IP-COMF), b)
in-phase at individual critical frequency (IP-CRIT), c) anti-phase
at comfortable frequency (AP-COMF), and d) anti-phase at critical
frequency (AP-CRIT). The comfortable oscillation frequencies
were defined as 64% of the individual fT. This percentage was
chosen so that none of the individual comfortable frequencies was
inferior to the limit of 1 Hz, which can be considered as a minimal
frequency of comfort (see the study by Temprado, Zanone,
Monno, & Laurent, 2001, on comparable forearm pronation-
supination movements using two joysticks). The critical oscillation
frequencies corresponded to the frequency levels that preceded the
individual fT in the incremental protocol. With regard to the main
hypothesis of this study, the three first conditions do not exert any
critical constraint on the coordinative system as there is no risk for
the occurrence of phase transition; only for the AP-CRIT condition
the task constraints are such that, without containing the variability
of relative phase, there is an actual risk for participants to experi-
ence a phase transition.
Results from the first part of the data collection have already

been reported in Torre (2010). Torre (2010) presented an analysis
of the data from phase 1 and from a single condition (anti-phase
coordination at critical frequency) of phase 2. The study showed
that the noise distributions surrounding the phase transition in
bimanual coordination were indeed 1/f distributed and correlated
with the individual transition frequencies.
The time series of 512 oscillations produced by each participant

in the four experimental conditions were subjected to analysis. The
series length was determined so as to find an optimal compromise
between two main methodological requirements. First, the perfor-
mance of fractal analysis in terms of accuracy and variability of
estimations has been shown to decrease markedly with the series
length (see Delignières et al., 2006). Secondly, the protocol should
allow the observation of the coordinative system under steady
states and, therefore, prevent from within-trial changes due to
learning, notably in the AP-CRIT condition.

Data Analysis

Relative phase series were determined by point estimate as the
time lag between the dominant and the nondominant hands’ os-
cillation peaks, normalized by the current period of the dominant
hand. Mean and variance were computed for each series.
As mentioned in introduction, we additionally determined the

series LV as the variance of the series obtained by differentiation
of the original relative phase, i.e., the series of increments between
the successive states of relative phase.
In order to reliably assess the long-range correlation properties

in experimental time series, it is strongly recommended to combine
different methods of fractal analysis, ideally working in the time
and frequency domains (Delignières et al., 2006; Rangarajan &
Ding, 2000). Note that all fractal methods yield a specific index of
long-range correlations, all these indexes being related to each
other through simple linear relationships. Therefore, a suitable
procedure for an accurate and dependable assessment consists in
performing multiple estimations of the index of long-range corre-
lations for each series, to convert the different estimators into a
same fractal exponent (e.g., the commonly used Hurst exponent
H), and finally average the estimations obtained per series to

approach the “true” exponents (Delignières et al., 2006; Torre et
al., 2007).
Here, we combined two complementary methods: lowPSDwe

(Eke et al., 2000) working in the frequency domain, and
DFA (Detrended Fluctuations Analysis, Peng, Havlin, Stanley, &
Goldberger, 1995) working in the time domain. We selected
these methods because of their reliable performances on relatively
“short” experimental series (see Delignières et al., 2006).
LowPSDwe is an improvement of the classical spectral analysis as
it includes a number of preprocessing steps before the Fast Fourier
Transform. The spectral exponent � � [�1, 3] is estimated by the
negative of the linear regression slope of the power spectrum in
bilogarithmic coordinates and, as proposed by Eke et al. (2000),
the high-frequency power estimates (f 	 1/8 of maximal fre-
quency) are excluded from the fitting of �. For �1 � � � 1, the
series is a fractional Gaussian noise (fGn) containing either anti-
persistent correlations (�1 � � � 0) or persistent long-range
correlations (0 � � � 1). White noise is characterized by � � 0.
For 1 � � � 3, the series belongs to the family of fractional
Brownian motions (fBm). In particular, persistent long-range cor-
relations, or 1/f � noise, are characterized by 0.5 � � � 1.5.
Negative indexes reveal antipersistent correlations in the series.
The spectral index � is related to the Hurst exponent by H � (� 

1)/2, in the case of an fGn, and by H � (� � 1)/2, in the case of
an fBm,
DFA exploits the diffusion properties of the series, analyzing the

relationship between the mean amplitude of fluctuations and the
size of the observation window within which these fluctuations are
measured. For fractal series, a power-relationship characterized by
the scaling exponent 
 � [0, 2] is expected. For 0 � 
 � 1, the
series is a fractional Gaussian noise (fGn) containing either anti-
persistent correlations (0 � 
 � 0.5) or persistent long-range
correlations (0.5� 
 � 1). White noise is characterized by 
 � .5.
For 1 � 
 � 2, the series belongs to the family of fractional
Brownian motions (fBm). Persistent long-range correlations are
revealed by 0.75 � 
 � 1.25. For an fGn, H � 
, and for an fBm,
H � 
 � 1. At the end, the separate estimates provided by the two
methods were averaged to obtain a mean H for each relative phase
series.
Note that the estimation of the exponents of long-range corre-

lations using the DFA and the lowPSDwe is on the basis of fitting
a regression line to the diffusion plots/power spectra obtained.
However, performing linear regression on such graphs is relevant
only if the series do indeed contain long-range correlations. There-
fore, we complemented the two analyses with the Auto-Regressive
(Fractionally Integrated) Moving Average (ARFIMA/ARMA)
modeling method, which allows for the presence of “genuine”
long-range correlations to be assessed through statistical inference.
Basically, the method consists in fitting 18 models to the experi-
mental series: nine ARMA (p, q) models, with p and q varying
systematically from 0 to 2, and the corresponding ARFIMA (p, d,
q) models, where d is the fractional integration parameter, and to
select the best model using a goodness-of-fit statistic models (for
more details on the method the reader is referred to Torre, Delig-
nières, & Lemoine, 2007b, and Wagenmakers et al., 2004). Two
complementary indicators can then be used to conclusively infer
the presence of long-range correlations: the percentage of series
for which the best fitting model is an ARFIMA model and the sum
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of weights concentrated by the tested ARFIMA models compared
with the ARMA.
Finally, we tested for the differential stability of coordination in

the four experimental conditions, in particular for the actual crit-
icality of AP-CRIT, by applying a two-way ANOVA 2 (Coordi-
nation) � 2 (Frequency) with repeated measures on both factors,
on the variance of relative phase series. The same analysis was
applied to the mean Hurst exponents and the LVs. To test the
central hypothesis of this study, we determined Pearson’s linear
correlation coefficient (r) between the series’ LVs and mean Hurst
exponents for the four experimental conditions.

Results

The individual transition frequencies determined in the first part
of the experiment ranged between 1.7 and 2.4 Hz. Consequently,
the individual oscillation frequencies used for the subsequent
experimental conditions ranged between 1 Hz and 1.5 Hz for the
comfortable conditions and between 1.5 Hz and 2.2 Hz for the
critical conditions.
The results for the mean relative phases, variances, and LVs

obtained in the four experimental conditions are summarized in
Table 2. To check the actual variability of the global variances of
the relative phase series produced across participants, we com-
puted the coefficient of variance (CV) for the four experimental
conditions. The CV was of 41% in the IP-COMF condition, 41%
in IP-CRIT, 37% in AP-COMF, and 43% in AP-CRIT, thereby
showing that the variance of the relative phase did vary substan-
tially across participants.
Using ARFIMA/ARMA modeling, the presence of long-range

correlations in relative phase series was statistically assessed for
14 of 14 (100%) series produced in the IP-COMF condition, for 13
of 14 (93%) series in IP-CRIT, for 14 of 14 (100%) series in
AP-COMF, and for 12 of 14 (86%) series in AP-CRIT. The sum
of weights concentrated by ARFIMA models (i.e., the probability
that an ARFIMA model is indeed the best fitting model for the
series) was of 0.96, 0.95, 0.98, and 0.94, for IP-COMF, IP-CRIT,
AP-COMF, and AP-CRIT, respectively. These results allow us to
conclude that the series of relative phase produced in the four
experimental conditions contained genuine long-range correlations
(Torre, Delignières, & Lemoine, 2007b), to be estimated by the
DFA and lowPSDwe.
Figure 2 shows the averaged diffusion plot and power spectrum

given by the DFA and the lowPSDwe. The estimation of the
long-range correlation properties of relative phase series using
lowPSDwe yielded � indexes of 0.50 (�0.24) for IP-COMF, 0.42
(�0.15) for IP-CRIT, 0.28 (�0.24) for AP-COMF, and 0.45
(�0.32) for AP-CRIT. Estimations performed by DFA yielded 

exponents of 0.83 (�0.11) for IP-COMF, 0.78 (�0.10) for

IP-CRIT, 0.78 (�0.16) for AP-COMF, and 0.82 (�0.20) for
AP-CRIT. The mean Hurst exponents obtained after converting
into the Hurst exponent and averaging the two estimations per
series are displayed in Table 2.
The ANOVA on the variances of relative phase series showed

main effects of both coordination mode, F(1, 13) � 20.23, p �
.05, �p

2 � 0.61, and oscillation frequency, F(1, 12) � 33.28,
p � .05, �p

2 � 0.72, as a significant interaction, F(1, 13) �
21.79, p � .05, �p

2 � 0.63. LSD-Fisher’s post-hoc comparison
showed that only the variance in AP-CRIT was significantly
higher than in the three other conditions (Figure 3, left graph). The
ANOVA on the series’ LV evidenced a significant main effect of
oscillations frequency, F(1, 12) � 9.15, p � .05, �p

2 � 0.41, as a
significant interaction, F(1, 12) � 7.17, p � .05, �p

2 � 0.36
(Figure 2, middle graph): the LV in AP-CRIT was significantly
higher than for the three other conditions. Finally, there was a
significant effect of interaction between coordination and oscilla-
tion frequency, F(1, 13) � 6.85, p � .05, �p

2 � 0.35, on the mean
Hurst exponents of relative phase series (Figure 3, right graph):
post-hoc comparisons showed that the persistence of correlations
was higher in IP-COMF than in AP-COMF.
Finally, the linear correlation tests between the mean Hurst

exponents and LV of relative phase series showed a gradually
increasing but nonsignificant negative correlation for the three
noncritical experimental conditions, with r12 � 0.05 for IP-COMF,
r12 � �0.30 for IP-CRIT, and r12 � �0.40 for AP-COMF. This
negative correlation reached the level of significance only in the
AP-CRIT condition where r12 � �0.54 (p � .05). Figure 4 maps
these correlation coefficients onto the stability levels in the poten-
tial landscape of bimanual coordination dynamics, as defined by
equation 6. Figure 5 displays the mirror-like coevolution of the LV
and the mean Hurst exponents of relative phase for all participants.

Discussion

Research on human performance and health continually deals
with the intimately related issues of stability, variability, and
adaptability of the system in question and its time evolutionary
properties. In the present study, we proposed to investigate this
complex relationship by decomposing the notion of variability into
two constitutive and essentially independent ingredients: the LV
defined as the variance of increments between the successive states
of the variable and the structure of serial correlations, i.e. the way
these increments are arranged over time. We hypothesized that the
mutual adjustment between the two dimensions of variability is a
potential resource for the system to contain the outcome variance
or, worded differently, stabilize behavior. Then, the emergence of
an interdependence between the LV and the serial correlation
structure may be an indicator of the system’s adaptation to main-

Table 2
Summary of the Main Results Obtained in the Four Bimanual Coordination Conditions

In-phase f comfort In-phase f critical Anti-phase f comfort Anti-phase f critical

Relative phase (°) �3.03 (�3.88) �5.47 (�8.64) 176.42 (�7.35) 172.47 (�11.49)
Local variance 112.07 (�50.90) 129.58 (�58.68) 106.58 (�48.94) 199.95 (�119.65)
Hurst exponent 0.79 (�0.10) 0.74 (�0.07) 0.71 (�0.12) 0.77 (�0.17)
Variance 64.21 (�26.37) 87.19 (�35.82) 76.00 (�28.26) 182.80 (�77.76)
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tain an appropriate behavior under constraining functioning con-
ditions. Our present results provided empirical support for our
hypothesis. Following a detailed discussion of the results, we
examine the relationship of our findings to the current formaliza-
tions of the HKB model for bimanual coordination. Our results
motivate a closer look at the notions of adaptability and adaptation,
stability and stabilization.

The Local Variance and Serial Long-Range
Correlations Coadjust in the Critical Condition

We implemented the bimanual coordination paradigm (Kelso,
1995) on the strength of the well-established knowledge about the
stability properties of coordination dynamics. Of particular interest
is the fact that performance of anti-phase coordination close to a
critical oscillation frequency is known to be intrinsically unstable
and presents a risk of occurrence of phase transition. This risk is
facilitated by the stochastic fluctuations inherent to the system
(Collins, Park, & Turvey, 1998; Kelso et al., 1987; Schöner et al.,
1986).
Our present results were consistent with previous results as

coordination produced in AP-CRIT appeared to be intrinsically
less stable, with both the global variance and the LV of relative
phase series being significantly higher than in the three noncritical
conditions (IP-COMF, IP-CRIT, and AP-COMF).

In contrast, the results showed no difference in the persistence of
long-range correlations in relative phase assessed by the mean
Hurst exponents, between the critical condition AP-CRIT and the
other experimental conditions. The only significant difference in
the Hurst exponent appeared between IP-COMF and AP-COMF.
This discrepancy between the evolutions of variance and long-
range correlations as a function of experimental conditions con-
firms the fundamental importance of methods for long-range cor-
relation analysis. It is apparent that variance does not affect the
estimation of the long-range correlation structure in time series
(Delignières et al., 2006; Eke et al., 2000).
If we accept the argument that the fluctuations that affect the

coordinative behavior may play an operational role by contributing
to the phase transition (Collins, Park, & Turvey, 1998; Kelso et al.,
1987; Schöner, Haken, & Kelso, 1986), one can reasonably argue
that containing the outcome variability may contribute to with-
standing the drastic qualitative change in the coordinative behav-
ior. In this perspective, the analysis of our empirical results beyond
the mean values obtained per condition confirmed the central
hypothesis of this study: we obtained a significant negative corre-
lation between the LV and the Hurst exponents of the relative
phase series produced by participants in the critical condition of
performance only. Moreover, the strength of this correlation
closely matched the theoretical stability regimes of bimanual co-

Figure 2. Average diffusion plot (left) and power spectrum (right) obtained with the DFA and the lowPSDwe,
for all experimental series of relative phase. Both graphs show consistent linear trends.

Figure 3. Relative phase variances, local variances, and mean Hurst exponents as a function of coordination
mode and oscillations frequency. Error bars indicate standard deviations.
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ordination dynamics, as represented by the HKB potential function
(Haken et al., 1985, Figure 3). Indeed, the correlation increased
gradually with decreasing intrinsic stability of the required coor-
dination but remained below the level of significance in the three
noncritical conditions. Accordingly, we argue that when the con-
straints on the system are such that there is an actual risk that the
required behavior breaks down or changes qualitatively, the mu-
tual adjustment between the LV and the correlation structure of
series constitutes a potential way for the system to adapt by
containing the outcome variability.

The Relationship of the Present Findings to the
HKB Model

The main body of studies on bimanual coordination has built on
the stochastic differential equation formalism of the HKB model
(Schöner et al., 1986), where the relative phase dynamics obeys the
following equation:

�̇ � � asin� � 2bsin 2� � �Q�t. (7)

In this equation, � is a Gaussian white noise process of strength
Q, which represents the random fluctuations inherent in the system
and affecting the coordination patterns. The deterministic part of
the equation (with parameters a and b) accounts for the intrinsic
stabilities, or strengths of attractiveness, of in-phase and anti-phase
coordination. Specifically, this part determines the time to return to
the coordination pattern following a brief perturbation (relaxation
time) and, in consequence, the autocorrelational properties of the
successive states of the relative phase.

Accordingly, several studies have intended to tease apart the
relative contributions of the intrinsic stability (�) of the coordina-
tion pattern performed, and the stochastic forces (Q) inherent in the
system, to the variability observed in experimental data (e.g., Kudo
et al., 2006; Pellecchia et al., 2005; Richardson, Lopresti-
Goodman, Mancini, Kay, & Schmidt 2008; Richardson et al.,
2007). One can demonstrate that the standard deviation of the
relative phase produced is proportional to �Q/ 2� (Schöner et al.,
1986). While the intrinsic stability of coordination varies as a
function of control parameters, such as the required movement
frequency, the magnitude of the stochastic fluctuations is assumed
to be invariant across the conditions of performance.
With respect to our present work, an intuitively appealing temp-

tation would be to connect the LV and the long-range correlation
structure with the two determinants of the relative phase variability
stated in the HKB formalism. In this view, one would readily draw
correspondence between the structure of serial correlations with
the function that determines the intrinsic stability (�) of coordina-
tion and LV with the strength of the stochastic forces (Q). From
this perspective, the results reported by Torre (2010), showing a
negative correlation between the individual Hurst exponents of the
relative phase produced and the frequency level at which partici-
pants switched from anti-phase to in-phase, would support the idea
that the long-range correlation properties relate directly to the
intrinsic stability of coordination.
However, in light of our present results, the abovementioned

connections appear inconsistent. Indeed, according to the HKB
dynamics, when the intrinsic stability of coordination decreases,
the relative contribution of the deterministic determinant (the
attractor strength) to the relative phase variability increases with
respect to contribution of the stochastic random forces (assumed
constant). In terms of the serial correlation properties and consid-
ering the above assumptions, this implies that we should observe
a monotonic evolution (progressive strengthening or fading) of the
long-range correlations with decreasing intrinsic stability. This
prediction is incompatible with our present results. We observed
no systematic evolution of the long-range correlation properties as
a function of the experimental conditions, and no difference be-
tween the Hurst exponents obtained in the critical condition and
the comfortable conditions (Figure 3). Moreover, our main result is
that the emergence of an interdependence between the LV and the

Figure 5. Illustration of the significant negative correlation between local
variances and Hurst exponents of relative phase series in AP-CRIT: the
graph shows a quasi-systematic opposite variation of the two measures. To
highlight the correlation, participants were ordered by increasing level of
local variance.

Figure 4. Coefficients of linear correlation between the local variances
and mean Hurst exponents of relative phase obtained in the four experi-
mental conditions IP-COMF, IP-CRIT, AP-COMF, and AP-CRIT. The
coefficients are mapped onto the graphical representation of the potential
function (Haken, Kelso, & Bunz, 1985), which formalizes the stability
regimes of bimanual coordination dynamics as a function of required
relative phase and oscillation frequency. The empirical correlation coeffi-
cient increases gradually as the depth of the attractors decrease, that is, as
the theoretical intrinsic stability of coordination decreases. The correlation
becomes statistically significant only in the critical condition of perfor-
mance presenting an actual risk of phase transition.
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serial long-range correlations is in the critical condition only. This
result seems inconsistent with the assumption of two formally
independent determinants of the relative phase variability, as it
would imply a qualitative change in the structure of the HKB
model between comfortable and critical conditions of perfor-
mance.
In order to bring the results of the present study within the

broader HKB model framework, we must carefully distinguish
between the empirical properties of coordination dynamics and the
formalism and analytical tools used to assess these properties. One
might consider that the combination of the intrinsic stability of a
given coordination pattern and the stochastic fluctuations sur-
rounding it determine the amount of supplemental or “active”
stabilization needed to maintain coordination under critical perfor-
mance conditions. Of special consideration is the influence of
some individual factors and adaptive processes upon the intrinsic
stability level of coordination. The finding of negative correlations
between the individual long-range correlation properties and tran-
sition frequencies (Torre, 2010) would support the idea that the
long-range correlations capture (among others) some individual
determinants of the resultant stability of performance. We hope
this work would encourage more systematic investigations of the
individual-specific factors of performance (e.g., the role of per-
ceptual systems, attention/arousal, corrective processes, and cog-
nitive strategies) and their contributing roles to LV and global
variability.

Adaptability and Adaptation, Stability and
Stabilization in Serial Performance

Literature on 1/f � noise in human performance and health has
commonly acknowledged a kind of idealized view on the 1/f �

phenomenon as a warranty for systems’ adaptability and functional
responsiveness (e.g., Iyengar et al., 1996; Jordan, Challis, & New-
ell, 2006; Marks-Tarlow, 1999; Peng et al., 1993; Schmidt, Beek,
Treffner, & Turvey, 1991). Both the specific statistical properties
of 1/f � noise (behaving at the frontier between stationary, fGn, and
nonstationary, fBm processes) and the generic organization prin-
ciples proposed to account for the widespread occurrence of 1/f �

noise attest to this view. Such accounts include the basic idea that
systems that generate 1/f � fluctuations are typically constituted of
multiple weakly-coupled components operating at different time
scales, so that an alteration of one component’s functioning does
not necessarily alter the macroscopic behavior of the whole system
(e.g., Peng et al., 1993; Schmidt et al., 1991). Another generic
explanation for the occurrence of 1/f � noise is the assumed meta-
stable dynamics of complex system. Metastability is characterized
by the coexistence of latent patterns favoring rapid organization
and reorganization between transient behaviors as shown in brain
activity (Bressler & Kelso, 2001) or cognitive performance (Kello,
Anderson, Holden, & Van Orden, 2008; Kello et al., 2007). Fi-
nally, 1/f � noise has been shown to be present at all levels of
observation of a system so that multiple 1/f � -networks are nested
within a larger 1/f � -network and so forth, “from molecules to
mindfulness” (Anderson, 2000, p. 193). It has been argued that
such scaling organization may facilitate the communication and
information transmission within and between 1/f � -networks (e.g.,
Marks-Tarlow, 1999; Soma, Nozaki, Kwak, & Yamamoto, 2003;
West, Geneston, & Grigolini, 2008; Yu, Romero, & Lee, 2005)

and as such help systems’ adaptability. So, although further inves-
tigations are needed to uncover the specific reasons and mecha-
nisms underlying this generic principle, several interdisciplinary
approaches in literature tend to converge towards the idea that 1/f �

noise and adaptability go together.
Now, if 1/f � noise is an indicator of the capability of a system

to adapt, then the directly ensuing question is how 1/f � noise and
its variations relate with the system’s effective adaptation. Our
present finding provides a possible explanation. In fact, the idea
that the presence of 1/f � noise signs an optimal state of adaptive
functioning is apparently consistent with numerous empirical ev-
idences showing its alteration towards either white noise or
Brownian motion in the case of systems’ dysfunction. In both
cases, such alterations have been interpreted as reflecting a loss of
complexity in the system (Goldberger et al., 2002). However, one
may wonder whether these two forms of alteration of 1/f � noise do
indeed reflect comparable phenomena.
On the one hand, the change in serial correlations towards

fractional Brownian motion, i.e. an increasing nonstationarity of
performance over time, seems intuitively consistent with the ob-
servation of a system that quits its steady state functioning under
severe constraints or pathology (see, for example Gilden & Han-
cock, 2007; Peng et al. 1995). This form of alteration of 1/f � noise
has been thought to reveal a simplification of the system in that a
reduced set of its components exert dominant influence on the
outcome behavior (Goldberger et al., 2002; Peng et al., 1993). On
the other hand, the change of 1/f � fluctuations into white noise has
been interpreted in terms of a decreasing complexity of the system
associated with the decline in regulation processes: a loss of
coordination between the system’s components leads to unpredict-
able behavior (e.g., Goldberger, Peng, & Lipstiz, 2002; Kyriasis,
2003; Lipsitz & Goldberger, 1992; Vaillancourt & Newell, 2002).
Our present finding provides an alternative perspective on this
second eventuality: it suggests that in certain conditions the whit-
ening of 1/f � noise may not signify the system’s dysfunction and
loss of regulation but, in contrast, the implementation of effective
adaptive processes to stabilize the outcome behavior, which is
characteristic of healthy and appropriately functioning systems.
Note that our present experiment did not yield a global decrease in
the persistence of long-range correlations in the critical condition
of performance, as the mean Hurst exponent of relative phase
series was not statistically different from any of the noncritical
conditions. This might be due to the rather moderate level of
constraints exerted on the system: one may suppose that as the task
demands are higher and the constraints exerted on the system
become more severe the individual within-series adjustment be-
tween the persistence of long-range correlations and the LV re-
vealed by our results would systematically result in an average
whitening of estimated 1/f � noise across all participants. This
account appears consistent with the idea supported by Correll
(2008), that the intensity of 1/f � noise is negatively related to the
effort made by participants to answer the task requirements.

Conclusion

In sum, we propose that the presence of 1/f � fluctuations in
performance might indeed characterize the adaptive capability of a
system. Effective adaptation, in contrast, may be indicated by the
emergence of a negative correlation between the persistence of
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long-range correlations and the LV, yielding a global stabilization
of performance over time, under given constraints. Therefore, we
argue that investigations into the issue of stability and adaptability
of behavior as a function of different functioning conditions would
be furthered by analyzing data beyond the average evolution of the
statistical properties of time series. In the present study, for exam-
ple, focusing on the variance of time series would have indicated
a global destabilization of coordination while the evolution of
long-range correlations would have indicated no effect of the
critical condition of performance, thereby concealing the actual
occurrence of adaptive processes. Decomposing variability into its
two independent ingredients, i.e. the LV and the serial correlation
properties, might contribute to disambiguate the complex relation-
ship between variability, stability, and adaptability in behavior of
complex systems and tackle some still open questions as the
definition of functional stability: Is the most stable behavior the
one that shows the minimal variability whatever its correlation
structure or the one that has the correlation structure which toler-
ates a maximal variability without breaking down? The present
study suggests that stabilization of performance is supported by a
coadjustment of the LV and the structure of serial correlations.
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