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Abstract
Rhythm perception depends on the ability to predict the onset of rhythmic events. 
Previous studies indicate beta band modulation is involved in predicting the onset 
of auditory rhythmic events (Fujioka et al., 2009, 2012; Snyder & Large, 2005). 
We sought to determine if similar processes are recruited for prediction of visual 
rhythms by investigating whether beta band activity plays a role in a modality- 
dependent manner for rhythm perception. We looked at electroencephalography 
time– frequency neural correlates of prediction using an omission paradigm with 
auditory and visual rhythms. By using omissions, we can separate out predictive 
timing activity from stimulus- driven activity. We hypothesized that there would be 
modality- independent markers of rhythm prediction in induced beta band oscillatory 
activity, and our results support this hypothesis. We find induced and evoked predic-
tive timing in both auditory and visual modalities. Additionally, we performed an 
exploratory- independent components- based spatial clustering analysis, and describe 
all resulting clusters. This analysis reveals that there may be overlapping networks 
of predictive beta activity based on common activation in the parietal and right fron-
tal regions, auditory- specific predictive beta in bilateral sensorimotor regions, and 
visually specific predictive beta in midline central, and bilateral temporal/parietal re-
gions. This analysis also shows evoked predictive beta activity in the left sensorimo-
tor region specific to auditory rhythms and implicates modality- dependent networks 
for auditory and visual rhythm perception.
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1 |  INTRODUCTION

Perceiving a rhythm requires making predictions about the 
temporal onset of rhythmic events. This ability allows us 
to dance in time with music, play music with others, de-
tect a musical beat, and notice when timing is off the beat. 
Common measures of rhythm perception are sensorimotor 
synchronization (SMS) tasks that involve synchronizing 
one's movements to rhythmic stimuli. Although most hu-
mans have little trouble synchronizing to auditory rhythms 
accurately, synchronizing to visual rhythms can be more 
variable. SMS to auditory rhythms are more reliable and 
adaptive (Chen et al., 2002; Lorås et al., 2012; Repp, 2003; 
Repp & Penel, 2004), compared with visual flashing rhythms 
(Comstock & Balasubramaniam,  2018; Repp & Su,  2013). 
However, when synchronizing movements with rhythmically 
moving visual stimuli such as a bouncing ball, synchroniza-
tion accuracy improves, yet not to the level of auditory syn-
chronization (Gan et  al.,  2015; Hove, Iversen, et  al.,  2013; 
Hove et al., 2010; Iversen et al., 2015). The reasons for the 
disparity in SMS accuracy across auditory and visual modal-
ities are as of yet unclear, and a closer investigation of these 
mechanisms is required for a complete understanding of neu-
ral timing and synchronization processes. The present study 
aims to explore neurophysiological mechanisms of auditory 
and visual entrainment, particularly with regard to prediction 
of rhythmic events.

Previous functional magnetic resonance imaging (fMRI) 
research has shown there is overlap in the structures involved 
between visual and auditory rhythm perception, particu-
larly within the premotor cortex, putamen, and cerebellum 
(Araneda et al., 2017; Hove, Fairhurst, et al., 2013). Although 
these areas appear to play a supramodal role in rhythm per-
ception, putamen activation is stronger for auditory rhythms 
than for visual rhythms, suggesting the auditory system may 
be more tightly connected to timing networks (Araneda 
et al., 2017; Hove, Fairhurst, et al., 2013). There is also evi-
dence from fMRI research suggesting the visual system has 
its own in- house rhythm timing mechanisms with sources in 
the parietal lobes (Jäncke et al., 2000; Jantzen et al., 2005), 
and in MT/V5 (Jantzen et al., 2005). The visual cortex has 
also been implicated in visual rhythm timing through ERP 
work (Comstock & Balasubramaniam,  2018) and through 
psychophysics work (Zhou et al., 2014). Taken together, we 
interpret this literature as support for modality- dependent 
rhythmic processing mechanisms, although to our knowledge 
this has not yet been clearly shown with a targeted electroen-
cephalography (EEG) study.

Beyond modality- dependent rhythm processing, it has 
been suggested that neural timing mechanisms are task 
specific (Comstock et  al.,  2018; Wiener & Kanai,  2016). 
Evidence suggesting distinct aspects of rhythm timing and 
duration perception has been seen in the cerebellum through 

lesion work (Grube et al., 2010), and work using transcranial 
magnetic stimulation (TMS) (Grube et al., 2010), additional 
evidence is seen through TMS work involving the posterior 
parietal lobes (Ross et  al.,  2018) suggesting a specific role 
for duration timing in the cerebellum, whereas the posterior 
parietal cortex is involved in rhythm timing. Much of the ev-
idence supporting predictive processing for rhythm comes 
through measures of neural oscillation within different fre-
quency bands. This oscillatory modulation is believed to in-
dicate communication between different regions of the brain, 
with lower frequency oscillations involved more in communi-
cation between regions that are farther away from each other, 
and higher frequencies involved more in localized communi-
cation (Sarnthein et al., 1998; Von Stein & Sarnthein, 2000). 
Furthermore, Bastos et al. (2015) have shown in non- human 
primates using electrocorticography (ECoG) that activity 
in the gamma and theta bands are involved in feedforward, 
or bottom- up visual processing, whereas the beta band 
is involved in feedback, or top- down visual processing. 
Michalareas et al. (2016) have shown similar results in human 
visual cortical areas with gamma involved in bottom- up pro-
cessing and alpha and beta involved in top- down processing 
by correlating human magnetoencephalography (MEG) data 
with corresponding macaque neural anatomy. Interestingly, 
Michalareas et al. (2016) also found that alpha and beta top- 
down processing affects the ventral and dorsal visual stream 
areas differently, by shifting dorsal stream activity higher in 
the functional hierarchy of visual processing, whereas ven-
tral stream downward. If frequency band activity relates to 
specific top- down or bottom- up processing networks, then by 
measuring frequency band activity during different rhythm 
timing tasks we can find markers of the networks involved, 
supporting different networks for different tasks. Neural os-
cillations within different frequency bands are therefore a 
rich source of information for investigating timing networks.

Neural mechanisms of auditory rhythm perception 
have been suggested to rely on strong interactions be-
tween motor systems and auditory cortices (Iversen & 
Balasubramaniam,  2016; Janata et  al.,  2012; Repp & 
Su,  2013; Ross, Iversen, et al.,  2016; Ross, Warlaumont, 
et  al.,  2016), possibly mediated through projections in pa-
rietal cortex (Patel & Iversen,  2014; Ross et  al.,  2018). 
Communication across these networks could be carried out 
through frequency band- specific oscillatory activity. Activity 
in the beta band (14– 30 Hz) is of primary interest as it has 
been shown to play a role in prediction and timing for audi-
tory rhythms using EEG (Snyder & Large, 2005) and MEG 
(Fujioka et al., 2009, 2012, 2015), as well as being implicated 
in the onset of movements (Kilavik et al., 2013).

Snyder and Large (2005) found differentiation between in-
duced and evoked activity in EEG high beta and low gamma 
bands (20– 60  Hz), where induced activity was defined as 
not phase locked to a stimulus onset and evoked activity was 
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defined as phase locked to the stimulus onset. By presenting 
subjects with a sequence of tones with occasional tones omit-
ted, Snyder and Large found induced activity was similar in 
tone trials and omitted tone trials, indicating expectation for 
the tones in the sequence, whereas evoked activity was greatly 
reduced when there was no tone. Fujioka et al. (2009) used 
a similar omission paradigm with MEG and found induced 
beta from auditory cortices decreased after tone onset and 
increased in anticipation of the expected tone onset. A later 
MEG study showed the rate of beta increase in anticipation of 
tone onset is dependent on the tempo of the stimulus, whereas 
beta decrease following tone onset is consistent across mul-
tiple tempi (Fujioka et  al.,  2012). Fujioka et  al.  (2012) ad-
ditionally found cortico- cortical coherence that followed the 
tempo of the rhythms between auditory cortices and senso-
rimotor cortex, supplementary motor area (SMA), inferior- 
frontal gyrus, and cerebellum.

The role of beta activity in visual rhythm perception is 
less studied. However, beta band amplitude modulation aris-
ing from the motor cortex has also been implicated in visu-
ally mediated temporal cues indicating expectation in a study 
using an implanted multielectrode array in the primary motor 
cortex (Saleh et al., 2010). More recently, Varlet et al. (2020), 
showed cortico- muscular coupling of beta- band activity in-
duced by audio- visual rhythms between EEG recorded over 
motor areas and EMG recorded from finger muscles press-
ing down on a force sensor. Significantly, the coupling ap-
peared to be modulated by the tempo of the rhythm and 
peaked roughly 100 ms prior to each tone in the sequence. 
Interestingly, the study did not find significant cortico- 
muscular coupling in response to separate auditory or sepa-
rate visual rhythms. Although Saleh et al. (2010) and Varlet 
et  al.  (2020) suggest involvement of beta band modulation 
in visual rhythm perception, the role of beta band activity in 
visual rhythm perception remains unclear.

To investigate predictive mechanisms of rhythm percep-
tion across modalities, we used EEG to record beta band 
modulation during auditory and visual rhythms. To sepa-
rate out the stimulus response activity from activity related 
to temporal prediction of the stimulus we used an omission 
paradigm similar to that used by Snyder and Large (2005) 
and Fujioka et al.  (2009). Given that previous studies have 
indicated involvement of sensory and motor- related beta 
in rhythm perception (Fujioka et  al., 2012, 2015; Varlet 
et al., 2020) we describe all Beta band activity. Because EEG 
activity smears at the scalp it can be difficult to separate out 
concurrent sources of activity. We used independent compo-
nent analysis (ICA) as a blind source separation method in 
an attempt to distinguish sensory and motor related activity.

Based on the assumption that beta oscillations play a gen-
eral role in top- down processing, we hypothesized that we 
would find induced beta power modulation for both auditory 
and visual modalities following the same pattern seen in 

Fujioka et al. (2009). Specifically, we hypothesized we would 
find an induced increase in beta in anticipation of the onset of 
each rhythmic stimulus event, and also prior to the expected 
onset of an omitted event (omission onset), followed by a 
sharp decrease in beta power after event onset, but not after 
omission onset. Furthermore, we expected that evoked beta 
power would increase only in response to stimulus onset and 
not in anticipation of omission onset based on the findings 
of Snyder and Large (2005). Because the motor system has 
been implicated in both auditory and visual rhythm percep-
tion, and evidence of motor related beta for rhythm percep-
tion has been seen for auditory rhythms (Fujioka et al., 2012, 
2015), and implicated in visual rhythms (Varlet et al., 2020), 
we expected to find motor related predictive beta activity for 
both auditory and visual modalities. To explore modality- 
specific characteristics of predictive beta without prior as-
sumptions about visual and auditory mechanism or network 
contributions to predictive beta, we performed an exploratory 
ICA- based clustering technique using component spatial in-
formation (dipole locations and scalp topographies) to group 
similar sources that were shared across subjects. To avoid 
bias in cluster interpretation, we present and describe in de-
tail all clusters.

2 |  MATERIALS AND METHODS

2.1 | Participants

A total of 18 subjects participated in the experiment (11 fe-
male, average age of 23.6 (20– 34)) with one being rejected 
after data collection for poor signal to noise ratio. All partici-
pants were right- handed and had typical hearing and typical 
or corrected vision. The experimental protocol was carried 
out in accordance with the Declaration of Helsinki. This 
study was approved by the UC Merced Institutional Review 
Board for research ethics and human subjects, and all partici-
pants gave informed consent prior to testing.

2.2 | Task

After subjects gave written consent, they were seated and fit-
ted with a 32 electrode EEG cap. Subjects were then tasked 
with watching isochronous flashing visual rhythms or listen-
ing to isochronous auditory rhythms. Both kinds of rhythms 
had an interonset interval (IOI) of 600  ms, and both had 
occasional omissions of single tones or single flashes. The 
rhythms were broken into stimulus trains with each train con-
sisting of 100 tones or flashes with 7 omitted tones or flashes 
placed randomly within the train. The location of the omitted 
tones or flashes in the stimulus trains were constrained such 
that there must be at least 8 tones or flashes between each 
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omission. There were 20 stimulus trains per condition for a 
total of 140 omissions in each condition. Subjects completed 
all of the stimulus trains in one modality, followed by all of 
the stimulus trains in the other modality, in design counter-
balanced across subjects. Before the omission conditions, 
subjects were presented with a condition with no omissions 
consisting of 140 tones or flashes. The non- omission stimu-
lus trains were of the same modality as the omission stimulus 
trains that would follow. This design resulted in 140 trials for 
each of the four conditions (tone non- omission, tone omis-
sion, flash non- omission, flash omission; Figure 1).

To ensure that subjects were attending to the rhythms, 
after each train a shorter sequence of 5 tones or flashes was 
presented at a slightly slower or faster tempo than the ex-
perimental train, and subjects were asked to determine if 
the shorter rhythm was slower or faster than the preceding 
rhythm. The number of correct responses and response times 
were recorded and used to determine if subjects were ade-
quately attending to the stimulus trains.

The auditory metronome consisted of 1,000 Hz tones last-
ing 50 ms with a 10 ms rise and 40 ms fall time, generated 
using Audacity digital audio software. The visual metronome 
consisted of light gray square flashes 3 × 3 cm lasting 50 ms 
each. In both cases, there was a black screen with a dark gray 
fixation cross in the center of the screen where the lines were 
approximately 3 mm wide and 4 cm long. The visual flashes 
always appeared behind the fixation cross so that the cross 
never disappeared when the flash appeared behind it.

The stimuli were presented using Paradigm experimen-
tal stimulus presentation software (Perception Research 

Systems,  2007) on a 60  Hz monitor, which was approxi-
mately 65 cm from the subject's head. Subjects responded to 
any prompts using a keyboard placed on a desk in front of the 
chair they were seated in.

2.3 | EEG data acquisition and processing

Electroencephalography was continuously recorded using 
an ANT- Neuro 32 channel amplifier with the ANT- Neuro 
32 electrode Waveguard cap. The electrodes were situated 
according to the 10– 20 International system and EEG was 
recorded with a sampling rate of 1,024 Hz. The data were 
then processed using the EEGLAB v14.1.1 toolbox (Delorme 
& Makeig,  2004) within MATLAB 2019. Channel loca-
tions were added using the standard location montage for 
the Wavegaurd cap. EEG data were first pruned by hand to 
remove sections between stimulus train blocks. This was 
done to remove any break periods between trains. Following 
pruning, the data were down- sampled to 256 Hz and then a 
high- pass filter with a 2 Hz passband edge and 6 dB cutoff 
at 1 Hz was applied. A low- pass filter with a 50 Hz pass-
band edge and 6 dB cutoff at 56.25 Hz was applied to remove 
60  Hz line noise. Bad channels were rejected that had ac-
tivity with lower than 0.8 correlation with their surrounding 
channels with the maximum channels rejected for any one 
subject being 5 (M = 2.71, MAD = 1.31). Rejected channels 
were then interpolated using spherical interpolation. We then 
removed single- channel artifacts using artifact source re-
construction (ASR), which has been shown to effectively re-
move large- amplitude or transient artifacts in the data (Chang 
et al., 2018; Mullen et al., 2015). ASR was performed using a 
conservative burst criterion parameter of 50 SDs. After ASR 
was run, we then re- referenced the data to average. To sepa-
rate out non- brain artifacts and for the source- level analy-
sis, we ran ICA using the AMICA ICA algorithm (Palmer 
et  al.,  2012). Dipole source localization was performed on 
the resulting components using the MNI head model, and 
two dipoles were fit where appropriate instead of one using 
the FitTwoDipoles plug in (Piazza et al., 2016). ICA com-
ponents were checked to find eye blink and cardiac compo-
nents, which were marked for later rejection. The remaining 
independent components were used for source analysis.

We then segmented the continuous data into four long 
epochs for the experimental conditions: Non- omission vi-
sual flashes, non- omission auditory tones, visual omissions, 
and auditory omissions. The non- omission conditions came 
from the non- omission stimulus train block that preceded the 
omission block. Each condition was epoched from −1.67 s 
prior to each tone/flash to 1.67  s following the tone/flash. 
Epoch length was determined by calculating the window size 
needed for the later time/frequency calculations, so the re-
sulting time/frequency data would span ±1.5 s from the tone 

F I G U R E  1  Schematic of control and omission conditions for 
both auditory and visual metronomes, and depiction of the visual flash 
metronome stimuli. The fixation cross was always visible for both 
auditory and visual conditions, even when the flash appeared in the 
visual condition
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or flash onset of interest. The omission groups were epoched 
in the same way in relation to omission events. Following ep-
oching, epochs were checked for blinks that occurred during 
either event onset (for the non- omission conditions) or ex-
pected onset (for the omission conditions) as defined as a 
50 μV or larger spike in frontal electrodes within ±100 ms 
of onset or expected onset. After epochs with eye blinks at 
event onset, or expected onset, were rejected, eye blink com-
ponents determined by AMICA marked earlier were then 
rejected. Remaining epochs with amplitude spikes greater 
than ±500 μV were then rejected. Finally, epochs that were 
deemed improbable were rejected by computing the proba-
bility distribution of values across the epochs for individual 
channels and across all channels. Any epoch that contains 
data values >6 SDs for the channel or 2 SDs for all electrodes 
was rejected. One subject was rejected due to having more 
than 50% of their total epochs being rejected. For the remain-
ing 17 subjects there were 140 possible epochs per condi-
tion per subject for the four conditions: visual non- omission 
(M = 123.24, max = 136, min = 96, MAD = 13.27), visual 
omission (M = 116.59, max = 132, min = 74, MAD = 18.19), 
auditory non- omission (M = 118.29, max = 136, min = 92, 
MAD = 14.24), auditory omission (M = 109.06, max = 129, 
min = 66, MAD = 20.12).

2.4 | Clustering procedure

Electroencephalography activity measured at the electrode 
level is smeared across the scalp making it difficult to sepa-
rate out signals from different sources. Because we are inter-
ested in time- sensitive neural activity from both sensory and 
motor areas that occur simultaneously, we focus our analysis 
on the source- level activity of components. To compare inde-
pendent components across subjects, we performed a cluster 
analysis using k- means clustering based on the component 
dipole locations and component scalp topographies using 
EEGLAB’s clustering tools (Delorme & Makeig,  2004). 
Using both dipole locations and scalp topographies allows 
for clusters that are more consistent across subjects than can 
be computed using a single measure (Onton et  al.,  2006). 
This clustering approach avoids statistical double dipping 
by excluding the measures of interest (event- related spectral 
perturbation [ERSP] and intertrial coherence [ITC]), and fo-
cusing only on the spatial features of the components. Dipole 
location and scalp topography were weighted equally, and 
PCA was applied to the component scalp topography data re-
ducing the number of dimensions to 3, matching the number 
of dimensions in the dipole locations and therefore reducing 
the overall number of dimensions to cluster. To ensure non- 
brain sources, including muscle activity and channel noise, 
were excluded from clustering, only components with di-
poles located within the head and with a residual variance of 

less than 15% were used resulting in a total of 289 total brain 
components across 17 subjects. The group of all 289 compo-
nents prior to clustering constitute the parent cluster, which 
we used to look at global- level activity. To determine the ap-
propriate number of clusters, we applied three measures for 
cluster number optimization (Calinski- Harabasz, Silhouette, 
and Davies- Bouldin) for between 5 and 30 clusters. The 
Calinski- Harabasz and Silhouette methods indicated the op-
timal number of clusters was 9, whereas the Davies– Bouldin 
method indicated an optimum number of 13. We used nine 
clusters to maximize the number of unique subjects per clus-
ter, plus one outlier cluster with components with positions 
of more than 3 SDs from any of the cluster centers. The re-
sulting nine clusters (Figure 2; Table 1) averaged 31.88 com-
ponents per cluster with a standard deviation of 7.17, which 
were made up from 15.78 subjects on average, standard devi-
ation 0.97. The outlier cluster consisted of three components 
from two subjects. No cluster had more than five components 
from any one subject. Table 1 shows the individual makeup 
of each cluster.

2.5 | Time– frequency analysis

Time– frequency analysis was completed for each subject at 
each channel and for each component used in the clustering 
analysis. The resulting time– frequency representations were 
then averaged across subjects for the individual channels 
in each condition and averaged across the components for 
each cluster for each condition. Induced and evoked time– 
frequency representations were calculated to determine the 
different roles they play during the rhythm perception task 
as they have been found to play different roles in auditory 
rhythm perception (Snyder & Large, 2005). Induced activ-
ity was calculated for each trial by first removing the mean 
of activity (ERP) from each trial so only non- phase locked 
activity remains, and then averaging the resulting time– 
frequency computations across trials. Evoked activity was 
calculated on the mean of the activity (ERP) to focus on 
the phase locked activity. All three time– frequency calcula-
tions were performed using the same parameters. The time– 
frequency calculations were computed with the newtimef 
function in EEGLAB (Delorme & Makeig, 2004) using 85 
linear spaced Morlet wavelets between 8 and 50 Hz with a 
fixed window size of 300 ms resulting in 2.4 cycles at 8 Hz 
and scaling up to 15 cycles at 50 Hz. The 300 ms window 
size was chosen to ensure the time– frequency representa-
tion from each individual stimulus was not contaminated by 
either surrounding stimuli, which were 600 ms apart. The 
convolution used the minimum step size for the sample rate 
of 256 Hz resulting in 772 evenly spaced steps with a step 
length of 3.9 ms. Baselines were computed separately for 
each condition using a relative to the mean baseline with 
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a period of −1,200 to −600 ms from the stimulus or omit-
ted stimulus onset, dependent on condition. This baseline 
period consisted of one complete 600 ms stimulus cycle for 
both the omission and control conditions, allowing us to 
focus on the oscillatory dynamics between stimulus events. 
Separate baselines for each condition were used to mini-
mize effects of individual variation and of differences that 
might arise between omission and non- omission conditions 
due to habituation to stimuli in the unvarying and longer 
blocks in the non- omission conditions. Although a com-
mon baseline would allow us to determine overall power 
differences between conditions in the frequency bands, our 
focus is on the changes in power that occur within condition 
within the timeframe of each stimulus train as described 
later in the slope analyses description. These computations 
were used to determine the ERSP values in terms of dB, 
such that the ERSP plots show shift in power from baseline 
at each time point.

To ensure changes in evoked activity were due to stimulus- 
driven phase shifts, we additionally calculated phase coher-
ence across trials using the ITC measure in the newtimef 
function of EEGLAB (Delorme & Makeig, 2004). ITC is cal-
culated by extracting the phase angle at each time– frequency 
point for each trial and comparing the phase angles across 
trials for coherence providing a coherence measure between 
1 and 0, where 1 indicates complete coherence across trials 
for a given time– frequency point, and 0 indicates no coher-
ence across trials. The ITC calculation required an additional 
time– frequency computation of the data using the same pa-
rameters as was done for induced activity except there was no 
subtraction of the ERP.

Beta activity was extracted from the ERSP values by av-
eraging the power at each step between 14 and 30 Hz. Beta 
ITC was extracted using the same procedure except applied 
to ITC values instead of ERSP values.

3 |  ANALYSIS

3.1 | Attention behavioral task

To assess if attention was maintained evenly between the two 
modalities, we analyzed the behavioral data from the attention 
task for the two omission conditions. Both auditory (94.72%) 
and visual (88.61%) conditions showed a correct response rate 
well above chance. To assess the differences between the au-
ditory and visual conditions, the number of correct responses 
and response times were assessed using paired t tests. There 
was a significant difference in number of correct attention tri-
als between the auditory (M = 18.94, SD = 1.09) and visual 
(M = 17.65, SD = 1.69) conditions; t(16) = −2.72, p = 0.015 
which we ascribe to the visual rhythm task being more dif-
ficult than the auditory rhythm task. There was no significant 
difference in response time measured in ms between audi-
tory (M = 1,405.04, SD = 572.09) and visual (M = 1,495.99, 
SD = 585.94) conditions; t(16) = 0.66, p = 0.52.

3.2 | Event- related spectral perturbations

To determine if ERSP power was being significantly modu-
lated by the stimuli and omissions, permutation statistics 

F I G U R E  2  Scalp topography and dipole locations of components for the nine clusters and the outlier cluster. Scalp topography includes 
activity from all four conditions. Blue dots indicate individual component dipole locations. Red dots indicate the average position
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comparing ERSP power values to baseline values using 
unpaired t tests with 2,000 permutations testing for signifi-
cance were performed. False discovery rate (FDR) correc-
tion was used to correct for multiple comparisons with alpha 
values being the computed p- value for each time– frequency 
point using a parametric FDR algorithm (Benjamini & 
Hochberg, 1995).

3.3 | Beta band slope analysis

Although significance testing in ERSP power can indicate 
significant power modulations in response to stimuli, we are 
interested in the dynamics of beta band activity following 
findings that indicate beta power rises to peak at the expected 
onset of an auditory tone followed by a trough after a tone, 
where the rate of the rise beta power, yet not the fall, is de-
pendent on the tempo of the stimuli (Fujioka et  al.,  2012). 
Since we hypothesized that rise in beta activity is related to 
the timing of the rhythmic stimuli, we would see beta power 
rise prior to the expected onset of the omitted stimuli at the 
same rate as beta would rise prior to the non- omitted stimuli. 
Furthermore, by investigating the slope of activity prior to 
the omission onset, we have a measure that is less likely to be 

affected by activity due to a response to the omission. To test 
this hypothesis, two slopes were fitted in the averaged beta 
activity for each subject for each condition based on a least 
squares measure in a procedure similar to that performed by 
Meijer et al. (2016). The first slope started at −300 ms prior 
to stimulus or omission onset and ended at stimulus or omis-
sion onset (0 ms). Using −300 ms as the starting point was 
chosen as the halfway point between stimuli. Because there 
is considerable variation across subjects in slope activity, a 
second slope was fitted starting at the lowest measured ac-
tivity between −300 and −100  ms and ending at stimulus 
or omission onset. Although comparing the slopes of the 
omission and non- omission condition could tell us if the two 
slopes are significantly different, our goal is to show that the 
two slopes are not significantly different and in fact are very 
similar. One way to show this is to compare against a third 
condition. To provide the third condition for comparison, 
we shuffled the ERSP data used to find slopes in the control 
condition for each subject at each channel, and for each com-
ponent for each cluster, and then extracted beta band power 
and fitted slopes. Fitting a slope to the beta band extracted 
from the shuffled ERSP power results in an effective slope 
of 0, which we use to compare the other slopes to. For the 
shuffled condition, ERSP power values along the entire time 

T A B L E  1  Information containing the component make- up of the nine clusters and outlier cluster. Although the corresponding Brodmann 
area for each cluster is determined based on the average Talaiarch coordinates of the component dipoles, the dipole locations for the individual 
components for each cluster are not all contained within the indicated Brodmann area. Individual dipoles for each component are shown in 
Figure 2. Components per subject column indicates both the average number of components per subject in the cluster, and the maximum 
components any single subject had in the cluster

Cluster Subjects Components
Components 
per subject

Mean 
R.V. 
%

Mean Tal 
coordinates

Corresponding Brodmann area 
of mean coordinates

1— Left frontal 15 20 Avg = 1.33
Max = 3

5.88 X: −31 Y: 45 Z: 14 Left area 10

2— Left sensorimotor 16 36 Avg = 2.19
Max = 4

5.86 X: −53 Y: −12 Z: 19 Left BA 1/4 (primary sensory/
primary motor)

3— Midline central 17 35 Avg = 2.06
Max = 3

6.54 X: −12 Y: −12 Z: 51 Left BA 6

4— Right sensorimotor 16 34 Avg = 2.13
Max = 4

5.21 X: 49 Y: −9 Z: 30 Right BA 4 (primary motor)

5— Right frontal 17 39 Avg = 2.29
Max = 4

7.07 X: 18 Y: 32 Z: 20 Right BA 8/9

6— Left temporal/parietal 15 28 Avg = 1.87
Max = 4

4.49 X: −42 Y: −58 Z: 13 Left BA 39 (angular gyrus)

7— Occipital 14 24 Avg = 1.71
Max = 3

4.52 X: −4 Y: −87 Z: −5 Left BA 18 (visual assoc)

8— Parietal 16 42 Avg = 2.63
Max = 5

4.42 X: 10 Y: −58 Z: 45 Right BA 7

9— Right temporal/parietal 16 29 Avg = 1.81
Max = 3

3.42 X: 41 Y: −61 Z: 7 Right BA 19/37 (peristriate area/
fusiform gyrus

10— (Outlier) 2 3 Avg = 1.5
Max = 2

7.03 X: 10 Y: −31 Z: −19 Null
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axis of each epoch of each frequency step were randomly 
shuffled 1,000 times using the randperm function in Matlab. 
Beta band power for each time point was then extracted from 
resulting shuffled ERSPs, the same as done with the non- 
shuffled ERSPs. Slopes were then fitted in the same way as 
with the non- shuffled data, except that instead of finding the 
minimum beta power between −300 and −100  ms for the 
shuffled condition, we used the same starting point used in 
the non- shuffled control condition for the corresponding sub-
ject or component. Figure 3 depicts slope fitting to beta band 
from the trough to 0 ms.

Four sets of t tests were used to determine if the fitted slope 
of beta activity prior to the onset of a tone or flash was equiv-
alent to the fitted slope of beta activity prior to the expected 
but omitted onset of a tone or flash for both induced and 
evoked activity and for both the slopes fitted from −300 ms 
to onset and for the slopes fitted to the trough between −300 
and −100 ms and onset. FDR correction was used to correct 
for multiple comparisons for all t tests using the method de-
scribed in Benjamini and Hochberg (1995) with alpha set to 
0.05. The first three analyses were performed using paired t 
tests comparing: the slopes of the omission conditions to the 
slopes of the non- omission conditions, the slopes of the non- 
omission conditions to the slopes of the shuffled conditions, 
and the slopes of the omission conditions to the slopes of the 
shuffled conditions. If beta power is being modulated such 
that it shows anticipation of the stimulus we would expect 
both the omission and control fitted slopes to indicate beta 
power is rising prior to stimulus onset, and therefore be sig-
nificantly different from the shuffled fitted slopes, which are 
effectively flat. Additionally, we would expect the omission 
and non- omission fitted slopes to not be significantly differ-
ent from each other as they both rise in anticipation of the 
incoming event regardless if that event is omitted or not.

Showing that a fitted slope in the omission condi-
tion is not significantly different than a fitted slope in 
the non- omission condition, and that both omission and 

non- omission- fitted slopes are significantly different than 
the shuffled slopes is not sufficient to claim that the slopes 
in the omission and non- omission conditions are equivalent. 
This is because a comparison between significant results 
and non- significant results is not necessarily significant 
(Gelman and Stern, 2006), and therefore, an additional test 
is required. To assess the viability of the comparison be-
tween the two results, we applied a post hoc comparison test 
as used in Abbott and Shahin (2018). The test calculated if 
the slope of the non- omission condition + the slope of the 
shuffled condition –  2 × the slope of the omission condition 
was significantly different from zero using a t test with the 
same FDR correction as used for the other t tests at each 
channel and each cluster. With these four tests, we show the 
beta slope is showing anticipation of the next event and that 
the slope of the omission condition is equivalent to the slope 
of the non- omission condition if: (a) the omission and non- 
omission slopes are not significantly different, (b) both the 
omission and non- omission slopes are significantly differ-
ent from the shuffled (flat) slope, (c) the post hoc compari-
son test of the three slopes is significant showing omission 
and non- omission slopes are equivalent.

3.4 | Evoked and induced comparison

To further understand the different roles evoked and in-
duced beta play in the temporal aspects of auditory and 
visual rhythm processing, we applied an additional ex-
ploratory analysis that measured peak power and peak time 
in response to both present and omitted tones and flashes 
similar to performed by Snyder and Large (2005). To make 
the comparison, ERSP power P was converted from dB to 
μV2 and normalized using the formula: Pnorm = (P − Pmin)/
(Pmax  −  Pmin). This normalization conversion resulted in 
values between 0 and 1 and was applied to ERSP values 
for both evoked and induced activity for each individual 
component for each cluster, after which beta power was 
extracted in the same manner as done for the slope analy-
ses. Peak power and peak time were determined by finding 
the time and normalized power of the peak power between 
±200  ms of the expected event onset. Paired t tests were 
then run on each cluster as well as the parent cluster to de-
termine the roles evoked and induced activity within each 
cluster. All t tests used FDR correction to account for multi-
ple comparisons (Benjamini & Hochberg, 1995).

3.5 | Intertrial coherence

While measuring induced and evoked activity allow us 
to contrast our results to the work from Snyder and Large 
(2005), neither measure provides a direct measure of the 

F I G U R E  3  Schematic for slope fitting and peak finding for beta 
activity. Slopes were fitted between the trough (between −300 and 
−100 ms) and 0. Peak beta was determined between −200 and 200 ms 
(range depicted in shaded area). Slopes were fitted for evoked and 
induced beta power, whereas peaks were found in evoked and induced 
beta power as well as in intertrial coherence in the beta range
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changes in phase coherence in relationship to the omission 
and non- omission onsets. We use ITC to confirm that the 
evoked activity we measure is due to phase coherence by 
comparing peak times of beta ITC with peak times of beta 
induced and evoked activity. The same procedure was used 
to extract beta coherence and find peaks as was used to find 
the peaks in induced and evoked beta activity. Paired t tests 
comparing ITC beta peak times with induced and evoked 
peak times were then run on each cluster including the parent 
cluster. All t tests used FDR correction to account for multi-
ple comparisons (Benjamini & Hochberg, 1995).

3.6 | Baseline comparison

To assess potential differences in habituation to the stim-
uli, an analysis was performed on the computed base-
line levels across non- omission and omission conditions 
within each modality. Although differences in baselines 
would not provide direct evidence to invalidate results 
from the slope, beta peak time, or ITC analyses, differ-
ences in baselines between conditions could account for 
reported differences in beta peak power between omis-
sion and non- omission conditions. Separate paired t tests 
comparing the baseline spectrum in the beta band were 
computed for each cluster for both induced and evoked ac-
tivity. All t tests used FDR correction to account for multi-
ple comparisons (Benjamini & Hochberg, 1995). Baseline 
power for the comparisons was taken directly from the 
time– frequency calculations used in the previous analyses 
and averaged across the beta band (14– 30 Hz) to match the 
other beta band analyses we report.

4 |  RESULTS

4.1 | Channel- level beta slope analysis

Figure 4 depicts the results of these tests at the electrode level 
show that only channel P8 meets the criteria for the four tests 
for visual beta: p > 0.05 for the omission to non- omission 
slopes comparison, p < 0.05 for the comparisons of the non- 
omission to shuffled and omission to shuffled slopes, and 
p < 0.05 for the post hoc comparison test as applied to the 
slopes fitted to the between the trough of beta power and 
onset for induced beta. Additional channels met the first three 
criteria but did not reach significance in the post hoc test for 
the induced trough- fitted slope for both visual and auditory 
conditions. No channels met these criteria for the slopes fitted 
at the fixed values between −300 ms and onset for the visual 
condition for induced or evoked beta. No auditory channels 
met the four criteria for any of the conditions.

4.2 | Cluster- level analyses

To better separate sensory and timing related activity and 
to investigate the sources of timing- related activity, we per-
formed the remaining analyses at the cluster level. Due to the 
large number of tests results from our analyses at the cluster 
level, we focus on four clusters of interest: the parietal and 
occipital clusters for the visual condition, and the left and 
right sensorimotor clusters for the auditory condition. In the 
visual condition, we focus on the parietal cluster as it shows 
the strongest visual predictive beta results while producing 
a beta time course very similar to two of the other posterior 
clusters: the left and right temporal/parietal clusters. We 
focus on the occipital cluster for the visual condition as its 
activity is mostly likely to arise from the visual cortex, yet its 
markers of predictive activity are not as pronounced as with 
the other posterior clusters. The left and right sensorimotor 
clusters are of interest as they are the only clusters that show 
predictive beta activity exclusively in the auditory modality, 
and additionally suggest hemispheric differences in auditory 
rhythm processing. In addition to these clusters, we also pre-
sent results from the parent cluster for both sensory modali-
ties to provide a global- level view of the beta activity. The 
test results from all clusters for both modalities, along with 
figures, are available in Supporting Information.

F I G U R E  4  Significant channels for the induced beta tests 
to slopes fitted from the trough of beta power between −300 and 
−100 ms to the event onset at 0 ms. Channels labeled had p > 0.05 
for the omission to control slopes comparison, and p < 0.05 for the 
comparisons of the control to shuffled and omission to shuffled slopes. 
The circled channel indicates p < 0.05 for the post hoc comparison 
test as applied to the slopes fitted to the between the trough of beta 
power and onset for induced beta
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4.3 | Event- related spectral perturbations

In the parent cluster containing all components, we find 
increased evoked power following both visual and audi-
tory stimulus onset, but not in response to visual or audi-
tory omission onsets (Figure  5). Induced activity from 
the visual condition in the parent cluster not only in-
creases significantly and peaks roughly at stimulus onset 
but also increases at omission onset, particularly in the 
low beta range. This pattern is also seen in the posterior 
clusters for visual activity, especially in the parietal clus-
ter (Figure  6a). In the occipital cluster, visual induced 
beta peaks much closer to the stimulus onset and prior to 
the omission onset (Figure  6b). Visual- evoked activity 
for the parietal and occipital clusters follows the same 
pattern seen in the parent cluster. ERSP power modula-
tion is less pronounced in response to auditory rhythms 
compared with visual rhythms in the parent cluster with 
both induced (Figure 5c) and evoked (Figure 5d) meas-
ures. Modulation of induced activity appears stronger 
in response to auditory rhythms in the right sensorimo-
tor cluster (Figure  6d) than the left sensorimotor clus-
ter (Figure  6c). Evoked beta modulation in response to 
auditory rhythms is relatively weak but appears less af-
fected by an auditory omitted event than seen with the 
visual clusters, especially in the left sensorimotor cluster 
(Figure 6c).

4.4 | Beta slope analysis

Slopes were fitted to the cluster- level beta activity with the 
four previously described tests applied. Figure 7 shows the 
time course of visual beta activity in the parietal (a) and 
occipital (b) clusters and auditory beta activity for the left 
(c) and right (d) sensorimotor clusters for both induced and 
evoked activity. At the cluster level in the visual modality 
two clusters plus the parent cluster met the criteria in induced 
activity for the slopes fitted to −300 to 0 ms: right temporal/
parietal and parietal clusters. The left temporal/parietal clus-
ter met the criteria for three of the slope tests but not for the 
contrast. No auditory clusters met the criteria for induced ac-
tivity with a fixed slope. Slopes fitted to the trough (between 
−300 and −100 ms) and 0 ms for induced beta activity in 
the visual condition resulted in five clusters plus the parent 
cluster meeting the criteria for the four slope tests: midline 
central area, right frontal, left temporal/parietal, parietal re-
gion, and right temporal/parietal clusters. The occipital clus-
ter met the first three slope criteria in the visual modality for 
the trough- fitted slope in induced activity. The parietal and 
the parent cluster met all four criteria for the auditory condi-
tion for trough- fitted slopes to induced beta. All other clus-
ters except the midline central area cluster met the first three 
slope criteria for auditory- induced beta trough- fitted slopes.

Slopes fitted to evoked beta at the cluster level resulted 
in the parent cluster for both auditory and visual modalities, 

F I G U R E  5  Time– frequency dynamics 
in the parent cluster for visual (a,b) and 
auditory (c,d) conditions. Data shown are 
grand averages across all components in 
the parent cluster, which is made up of all 
components prior to clustering to present 
global- level activity. Dotted lines in induced 
activity (a,c) indicate time– frequency 
values significantly different from baseline 
p < 0.01. Solid lines in evoked activity (b,d) 
indicate time– frequency values significantly 
different from baseline p < 0.001. ERSP, 
event- related spectral perturbation
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and the left sensorimotor cluster for the auditory modality 
meeting all four slope criteria for the trough- fitted slopes. 
The midline central area cluster, right sensorimotor, and pa-
rietal cluster met the first three criteria for the trough- fitted 
slope tests in both modalities. the left temporal/parietal and 
left frontal cluster in the auditory and visual modalities, 

respectively, met the first three slope criteria for the trough- 
fitted slopes. No cluster met any of the necessary criteria 
in the slopes fitted between −300 and 0 ms to evoked beta 
activity. All slope measures and tests for the visual and au-
ditory slopes can be found in the Tables S1 (visual) and S2 
(auditory).

F I G U R E  6  Time– frequency dynamics in selected clusters for visual (a,b) and auditory (c,d) conditions. Data shown are grand averages 
across all components in the indicated cluster. Dotted lines in induced activity indicate time– frequency values significantly different from baseline 
p < 0.01. Solid lines in evoked activity indicate time– frequency values significantly different from baseline p < 0.001. Induced and evoked ERSP 
values in response to visual rhythms from the parietal (a) and occipital (b) clusters, and ERSP values in response to auditory rhythms from the 
left sensorimotor (c) and right sensorimotor (d) clusters are depicted. ERSP, event- related spectral perturbation

F I G U R E  7  Time course of induced and evoked beta activity, and intertrial coherence (ITC) in the beta band for selected clusters in response 
to visual (a,b) and auditory (c,d) rhythms. Standard error is indicated with shaded bars. Values in response to visual rhythms from the parietal 
(a) and occipital (b) clusters, and values in response to auditory rhythms from the left sensorimotor (c) and right sensorimotor (d) clusters are 
depicted. Note that evoked beta and ITC increase in anticipation of an event only in the left sensorimotor cluster (c)
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4.5 | Induced and evoked beta peaks

Test values presented here are for the parent cluster contain-
ing all components unless otherwise indicated. For a full list-
ing of all test values and statistics for each cluster, refer to 
Tables  S3 (visual peak times), S4 (visual peak power), S5 
(auditory peak times), and S6 (auditory peak power). Figure 8 
shows the distribution of visual beta peak times and power for 
the parietal and occipital clusters. Figure 9 shows the distri-
bution of auditory beta peak times and power for the left and 
right sensorimotor clusters. In the visual modality, evoked 
peak times for the control condition were generally after flash 
onset (M = 68.49 ms, SD = 122.18) and later than omission 
peak times (M  =  11.04  ms, SD  =  133.51); t(288)  =  5.43, 
p  =  <0.001. Visual- induced peak times for the control 
condition tended to fall prior to onset (M  =  −12.95  ms, 
SD  =  120.03), whereas omission peak times fell after ex-
pected onset (M = 28.74 ms, SD = 129.27); t(288) = −4.47, 
p  =  <0.001. Both tests were also significant for the mid-
line central area and parietal cluster, with the left temporal/
parietal cluster significant in induced activity and the right 
temporal/parietal cluster significant for evoked. The evoked 

control peak was significantly later than the induced control 
peak; t(288) = 8.06, p = <0.001. This difference was also 
reflected in the midline central area, right frontal, left tem-
poral/parietal, occipital, parietal, and right temporal/parietal 
clusters. Evoked and induced omission peak times were not 
significantly different in the parent cluster (t(288) = −1.67, 
p = 0.164) or any other cluster. To determine if the differ-
ences in control and omission peak times across induced and 
evoked activity were relative for each kind of activity, a fur-
ther test compared the difference in evoked control and omis-
sion peak times (M = 57.44 ms, SD = 178) to the difference 
in induced control and omission peak times (M = −41.68 ms, 
SD = 158.43), revealing the relative shifts were significantly 
different; t(288) = 7.03, p = <0.001. A significant relative 
difference was also seen in the midline central area, left tem-
poral/parietal, occipital, and parietal clusters.

The same tests were run on the auditory beta peak 
times, revealing that evoked auditory peak times for control 
(M = 10.64 ms, SD = 122.49) and omission (M = −2.23 ms, 
SD = 131.29) and induced auditory peak times for control 
(M  =  0.35  ms, SD  =  129.6) and omission (M  =  6.7  ms, 
SD = 135.51) conditions were generally close to onset time 

F I G U R E  8  Mean beta peak times (a,b) and normalized beta peak power (c,d) for components in the parietal (a,c) and occipital clusters (b,d) 
in the visual condition. Induced activity for both clusters tended to peak prior to non- omitted flash onset and after omitted flash onsets, whereas the 
opposite pattern is seen in evoked activity and in intertrial coherence (ITC) (a,b). Normalized induced and evoked beta power peaks were higher in 
non- omission trials compared with omission trials in the parietal cluster (c), whereas only evoked beta power peaks were higher in non- omission 
trials than omission trials in the occipital cluster (d). Box plots depict interquartile range with median values indicated by black bars and 95% 
confidence intervals indicated with notches. Significance differences are shown through bars where *p < 0.05, ***p < 0.001
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and not significantly different from each other across all clus-
ters and all tests except for the left sensorimotor cluster, where 
evoked control peak time (M = 64.96, SD = 124.59) was sig-
nificantly later than induced control peak time (M = −23.44, 
SD = 122.23); t(34) = 3.27, p = 0.006 (Figure 9a). The dif-
ference between evoked control and omission peak times 
(M = 35.38, SD = 167.02) and the difference between induced 
control and omission peak times (M = −45.42, SD = 151.1) 
was also found to be significant in the left sensorimotor clus-
ter; t(34) = 2.39, p = 0.047 (Figure 9a).

Visual modality- evoked control peak values (M = 0.631, 
SD  =  0.141) were greater than evoked omission peak val-
ues (M = 0.366, SD = 0.163); t(288) = 20.04, p = <0.001. 
Similarly, visual modality- induced control peak values 
(M = 0.753, SD = 0.117) were greater than induced omis-
sion peak values (M  =  0.664, SD  =  0.136), although to a 
lesser degree; t(288) = 9.58, p = <0.001. The comparison 
tests across visual omission and non- omission peak values 
within evoked and induced activity were significant for all 
clusters. Comparisons across evoked and induced peak val-
ues for visual beta indicated induced non- omission peaks 
were generally larger than evoked non- omission peaks; 

t(288)  =  −13, p  =  <0.001. This comparison was found to 
be significant for all clusters except the occipital cluster 
(Figure 8d). Comparisons across visual beta evoked and in-
duced omission- fitted peak values indicate induced omission 
peak values are greater than evoked omission peak values for 
the parent cluster; t(288) = −23.99, p = <0.001, and all other 
clusters. A comparison between the difference in evoked non- 
omission and omission peak power (M = 0.264, SD = 0.224) 
and the difference between induced non- omission and omis-
sion peak power (M = 0.089, SD = 0.157) indicated a greater 
relative difference was seen in evoked activity for the parent 
cluster (t(288) = 11.24, p = <0.001), as well as for clusters 
3 (mid central), 5 (right frontal), 8 (parietal), and 9 (right 
temporal/parietal).

Running the same tests on auditory peak values show 
auditory evoked non- omission peak power (M  =  0.592, 
SD = 0.125) was significantly greater than auditory evoked 
omission peak power (M = 0.442, SD = 0.146) for the parent 
cluster (t(288) = 13.24, p = <0.001), and all other clusters 
except for the midline central area cluster. Auditory- induced 
non- omission peak power (M  =  0.73, SD  =  0.099) was 
slightly larger than auditory- induced omission peak power 

F I G U R E  9  Mean beta peak times (a,b) and mean normalized beta peak power (c,d) for components in the left sensorimotor (a,c) and right 
sensorimotor clusters (b,d) in the auditory condition. In the left sensorimotor cluster (a) induced beta peaked prior to tone onset in the non- omission 
trials, but after expected onset in omission trials. Note that evoked and intertrial coherence (ITC) beta peak times appear less variable in response 
to omitted tone than to non- omitted tones in the left sensorimotor cluster (a), whereas beta peak times were especially variabile in the right 
sensorimotor cluster (b). Normalized beta peak power shows the same pattern in both left (c) and right (d) sensorimotor clusters with power lower 
in the evoked omission trials compared with the evoked non- omission trials and overall lower evoked power than induced power. Box plots depict 
interquartile range with median values indicated by black bars and 95% confidence intervals indicated with notches. Significance differences are 
shown through bars where *p < 0.05, **p < 0.01, ***p < 0.001
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(M = 0.677, SD = 0.124), and significantly so for the parent 
cluster (t(288) = 5.72, p = <0.001), as well as for the midline 
central area, occipital, and right temporal/parietal clusters. 
A comparison across auditory- evoked and auditory- induced 
non- omission peak power reveals induced non- omission 
peak power is significantly greater in the parent cluster 
(t(288) = −15.65, p = <0.001), as well as in all other clus-
ters except the left frontal cluster. Auditory- induced omis-
sion peak power was found significantly larger in the parent 
cluster (t(288) = −20.27, p = <0.001), as well as all other 
clusters. Comparing the difference in evoked non- omission 
and omission peak power (M = 0.15, SD = 0.193) and the 
difference between induced non- omission and omission peak 
power (M = 0.053, SD = 0.156) revealed a greater relative 
difference in evoked activity that was significant in parent 
cluster (t(288) = 6.51, p = <0.001), as well as for the left 
sensorimotor, right sensorimotor, right frontal, and parietal 
clusters.

4.6 | Intertrial coherence

The time course of ITC in the beta band for the parietal and 
occipital clusters in the visual condition, and in the left and 
right sensorimotor clusters in the auditory condition is de-
picted in the bottom row of plots in Figure 7, where ITC can 
be compared against evoked and induced beta activity. The 
distribution of ITC peak times for the aforementioned clus-
ters are depicted in Figures 8a,b (visual) and 9a,b allowing 
for a comparison against evoked and induced peak times. No 
significant differences were found between ITC beta peak 
times and evoked beta peak times for either auditory or visual 
conditions in any cluster. Comparisons between ITC beta 
peak times and induced beta peak times showed induced beta 
peaked prior to the peak in ITC beta in the non- omission con-
dition in the visual modality in the parent cluster (t(288) = 8.5, 
p  =  <0.001), left temporal– parietal cluster (t(27)  =  3.7, 
p  =  0.012), right temporal– parietal cluster (t(28)  =  5.28, 
p  =  <0.001), parietal cluster (t(41)  =  5.59, p  =  <0.001), 
occipital cluster (t(23) = 9.83, p = <0.001), and right fron-
tal cluster (t(38) = 3.46, p = 0.015). Additionally, ITC beta 
peaked earlier than induced beta in the visual omission condi-
tion in the parent cluster (t(288) = −2.83, p = 0.042). There 
were no significant differences between induced beta peak 
times and ITC beata peak times in the auditory conditions. 
Non- omission ITC beta peaked later than omission ITC beta 
in the visual modality in the parent cluster (t(288)  =  7.7, 
p  =  <0.001), left temporal– parietal cluster (t(27)  =  3.17, 
p  =  0.035), right temporal– parietal cluster (t(28)  =  4.79, 
p = <0.001), parietal cluster (t(41) = 4.81 p = <0.001), oc-
cipital cluster (t(23) = 5.72, p = <0.001). In the auditory con-
dition, non- omission ITC beta peaked later than omission ITC 
beta in the parent cluster (t(288) = 3.16, p = 0.017).

4.7 | Baseline activity

The comparison of baseline power revealed no significant 
differences in the majority of the tests. The comparisons that 
do show differences are predominantly relegated to the parent 
cluster, and the left and right frontal clusters for both modali-
ties. Additional differences were seen in the visual modality 
in induced beta in the parietal cluster and evoked beta for 
the occipital cluster. All instances of significant differences 
between baselines show reduced power in the non- omission 
baseline compared with the omission baseline with the ex-
ception of the occipital cluster. All test values and statistical 
results of the baseline analysis are listed in Tables S7 and S8.

5 |  DISCUSSION

5.1 | Summary of results

Using an IC cluster- based approach for isolating network- 
level beta band activity, we describe predictive timing in a 
modality- specific way. Analyses on the slopes of beta activity 
from the parent clusters reveal evidence for both induced and 
evoked predictive timing in auditory and visual modalities at 
the global level. The slopes of beta activity from individual 
clusters indicates evidence of induced predictive timing in 
the visual modality in posterior regions: left and right tempo-
ral/parietal clusters, and parietal cluster; the midline central 
cluster, and from the right frontal cluster. Slope- based evi-
dence for induced predictive timing in the auditory modality 
was found in the parietal cluster. Cluster- specific evidence of 
evoked predictive timing in slope measures was seen only in 
the auditory modality, in the left sensorimotor cluster.

It would be expected, based on Snyder and Large (2005), 
that evoked beta peak power would be significantly lower 
for omission events compared with tone or flash events and 
that there would be no significant difference in induced 
beta peak power between omission events and tone or flash 
events. This pattern was seen much more prominently in the 
auditory modality, specifically in the parietal, left and right 
sensorimotor, left and right frontal, and left temporal/pari-
etal clusters. A significant difference would additionally be 
expected between how much evoked beta peak power shifted 
between non- omission and omission conditions and how 
much induced beta power shifted between non- omissions and 
omissions. This significant difference was replicated in sev-
eral clusters: the parietal cluster, left and right sensorimotor 
clusters, and the right frontal cluster, thus providing strong 
evidence for auditory- induced beta playing a predictive role 
in networks of those regions. There were a few differences 
in the peak times in auditory beta across both induced and 
evoked activity and conditions. The significant shift in peak 
time from tone to omitted tone trials between induced and 
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evoked beta for the right sensorimotor cluster follows the 
expected pattern of induced beta peaking later in response 
to an omitted tone than in response to a non- omitted tone. 
The evoked beta peaked earlier in response to an omitted tone 
than in response to a non- omitted tone. Although not signifi-
cant, we find it interesting that the opposite pattern with beta 
peak time appears in the left sensorimotor cluster: induced 
beta peaked slightly earlier in response to omitted tones 
than in response to tones, yet evoked beta peaked slightly 
later in response to the omitted tones than in response to the 
tones. This is in concordance with what would be expected if 
evoked beta was playing a predictive role, and when taken in 
conjunction with the slope evidence of predictive evoked ac-
tivity in the left sensorimotor cluster suggests the existence of 
significant hemispheric differences in auditory rhythm pro-
cessing mechanisms. The findings indicating no significant 
difference between auditory evoked beta peak times and ITC 
beta peak times suggests the hemispheric differences seen 
in the sensorimotor clusters are a result of phase resetting 
in the beta band anticipating the onset of the auditory event. 
The baseline analyses showing no significant differences 
for the sensorimotor and parietal clusters indicate the beta 
peak power differences are not due to any habituation effect. 
Although we do see a baseline difference in the right frontal 
cluster, the baseline differences only directly affect the non- 
omission to omission comparisons, and not the within con-
dition comparisons, for example, non- omission- induced beta 
peak power compared with non- omission- evoked beta peak 
power. Furthermore, when taking into account that the beta 
peak power results of the right frontal cluster closely match 
those reported by Snyder and Large (2005), they are likely to 
represent a genuine effect, indicating auditory beta timing in 
a left frontal region.

Differences in evoked and induced beta power in response 
to visual non- omissions and omissions did not provide clear 
evidence of predictive beta as seen in the auditory case, ex-
cept for in the shift of peak power between evoked and in-
duced activity from flash- to- flash omission in the parent, 
parietal, midline central, right frontal, and right temporal/
parietal clusters. Interestingly, a look at differences in peak 
times does provide stronger evidence suggesting separate 
roles for evoked and induced beta for the parietal, right and 
left temporal/parietal, and occipital clusters. In these clus-
ters, the evoked beta peak came earlier in response to omit-
ted flashes than to non- omitted flashes, whereas induced 
beta peaked later in response to omitted flashes than to non- 
omitted flashes, which is what would be expected if induced 
beta activity was playing a predictive role, whereas evoked 
beta was only responsive to stimuli. The significant differ-
ences between ITC beta peak times and induced beta peak 
times in the left and right temporal- parietal clusters, parietal 
cluster, and occipital cluster combined with the no signifi-
cant differences between ITC and evoked beta peak times 

add further evidence for the role of predictive beta activity. 
Although we do see baseline differences in the visual modal-
ity for the parietal, occipital, and right frontal clusters, those 
differences do not provide evidence to invalidate our findings 
because the slope- based and beta peak time evidence from 
those clusters would not be directly affected by baseline dif-
ferences. Taken together with the slope results, we interpret 
these findings as evidence of induced beta playing a predic-
tive role in visual rhythm perception similar to that reported 
in previous studies for auditory- induced beta (Fujioka et al., 
2009, 2012, 2015; Snyder & Large, 2005). The overall pat-
tern indicates induced beta power rising in anticipation of an 
incoming tone or flash. In response to the flash onset, we 
see phase resetting in the beta band as indicated by increased 
ITC, resulting in increased evoked activity. This increase in 
evoked activity appears to act as a marker to reset the antic-
ipatory timing seen in induced beta such that induced beta 
power drops before beginning its rise in anticipation of the 
next event. When an event is omitted, there is little to no 
phase resetting seen and so induced beta continues to rise and 
plateau before eventually falling until the next event causes 
the induced beta power to drop further and thus restarting 
the cycle.

If we take together the findings from the beta slope tests 
and the beta peak power and time tests, we find evidence of 
predictive visual beta in the left and right temporal/parietal 
clusters, the occipital cluster, the midline cluster, the pari-
etal cluster, and the right frontal cluster. These tests show 
evidence of predictive auditory beta in the left and right 
sensorimotor clusters, the right frontal cluster, and parietal 
cluster. The results taken all together suggest the existence of 
modality independent, but possibly overlapping networks for 
rhythm timing (Figure 10).

5.2 | Predictive beta band activity

Beta modulation has been shown to play a role in a wide 
range of activities including top- down control on senso-
rimotor systems (Arnal et  al.,  2011; Engel & Fries,  2010; 
Haegens & Golumbic, 2018; Picazio et al., 2014), facilitat-
ing long- range communication between cortical regions 
(Kilavik et  al.,  2013; Kopell et  al.,  2000) such as between 
sensorimotor and peripheral areas (Fujioka et  al.,  2015), 
and is suggested to play a role in encoding temporal inter-
vals (Wiener & Kanai, 2016). Beta band activity also cor-
relates with motor behavior, with power attenuation just 
before and during movements (see Kilavik et  al.,  2013 for 
review). Considering the suggested role, the motor cortex has 
in timing and predictive processing (Patel & Iversen, 2014; 
Schubotz et al., 2000), the role of beta in imposing general 
top- down control, and its role in facilitating communication 
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with sensorimotor peripheral systems, it is not surprising that 
beta activity appears to play a role in rhythm perception and 
prediction.

Beyond the link to sensorimotor behavior, beta activ-
ity is known to play a role in auditory rhythm perception. 
Frontocentral- induced beta and gamma modulation occurs 
with the onset of rhythmic events and can be seen at the ex-
pected onset of an omitted event (Snyder & Large,  2005). 
Fujioka et  al.  (2012) found that beta power arising from 
the auditory cortices increases before tone onset in an iso-
chronous rhythm at a rate dependent on the tempo of the 
rhythm and attenuates following the tone at a constant rate 
not dependent on the tempo of the rhythm. Beta activity has 
also been seen to play a role in maintaining beat and meter 
(Fujioka et al., 2015). Consistent with these findings, we find 
evidence of auditory- induced beta power peaking in anticipa-
tion of both tones and omitted tones, with the strongest evi-
dence coming from the parietal, left and right sensorimotor, 
and right frontal clusters. Because the source of neural acti-
vations are more difficult to localize using EEG than MEG, 
some caution is needed in interpreting the location of these 
sources. However, given other findings suggesting predictive 
induced beta arising from frontocentral regions using EEG 
(Snyder & Large, 2005), and from the auditory cortices, sen-
sorimotor cortices, and parietal cortices using MEG (Fujioka 
et al., 2012, 2015), we believe the regions indicated by the 
cluster locations are reasonable interpretations of the source 

of the predictive beta we measured. It is of note that we did 
not find evidence of predictive beta that we could tie clearly 
to the auditory cortex. This may be a limitation of the EEG 
IC cluster approach we used; it has been put forth that sig-
nals arising from the auditory cortex are more suited to being 
measured by MEG than EEG (Destoky et al., 2019).

When looking at beta modulation in the visual domain, we 
see a beta power increase at the expected onset of an omitted 
flash in multiple clusters. Comparing beta modulation in an-
ticipation of the visual onset between the omission and non- 
omission conditions shows induced beta power increasing 
prior to onset, followed by a sharp power drop- off, but only 
after flash onset, and not following omission onset. Although 
we expected to find predictive beta activity in the visual do-
main, it was surprising to see evidence of predictive induced 
beta modulated more clearly and across more clusters in the 
visual domain than in the auditory domain because the tim-
ing aspects of rhythm perception in the auditory domain are 
thought to be more precise as evinced by less variability in 
auditory SMS compared to visual SMS (Repp, 2005, Repp 
& Su, 2013). The discrepancy between auditory and visual 
beta modulation may be due to auditory signals being more 
suited to measurement from MEG than from EEG (Destoky 
et al., 2019), resulting in a comparatively reduced measure-
ment of beta modulated by auditory rhythms. The apparent 
size difference between the auditory and visual cortex may 
play an additional role.

F I G U R E  1 0  Overview of clusters with evidence of predictive beta activity for auditory and visual rhythm processing indicated. Clusters 
within the blue area show predictive activity for only auditory rhythms, clusters within the yellow for only visual rhythms, and clusters within 
the green areas for both auditory and visual rhythms. The type of predictive evidence is listed for each cluster with evidence for visual rhythms 
in yellow and auditory rhythms in blue. All predictive evidence was in induced beta activity except for auditory rhythms in the left sensorimotor 
cluster where evidence of predictive evoked beta activity was found. P, peak power evidence of predictive beta; S, slope evidence of predictive 
beta; T, peak time evidence of predictive beta. *Predictive evoked beta
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The clusters that show evidence of predictive beta activity 
for the visual modality do not perfectly overlap with what is 
seen in the auditory modality. In the sensorimotor clusters, we 
only find evidence of auditory predictive beta in bilateral sen-
sorimotor clusters, and not visual predictive beta. There is ev-
idence of visual predictive beta in the midline cluster, which 
contains dipoles localized to the premotor regions. This may 
indicate motor system involvement and would be in line with 
research suggesting the medial premotor region plays a role 
in predictive timing in primates across sensory modalities 
(Merchant et al., 2013). However, this begs the question of 
why the same activity was not seen in the auditory modality if 
premotor timing activity is not modality specific. A possible 
explanation is given by work reporting that a greater number 
of cells in the primate SMA respond to visual timing cues 
than to auditory timing cues (Merchant et al., 2015), although 
it is not clear if this finding extends to humans or if it is spe-
cific to the primates involved in that study. It is also of inter-
est that we find predictive visual- induced beta activity from 
the slope analysis in left and right temporal/parietal junction 
and parietal clusters, but not in the occipital cluster. Given 
the difficulty in localizing sources with EEG, and the com-
ponent distribution of the four posterior clusters, it is likely 
the left and right temporal/parietal and parietal clusters con-
tain activity arising from cortical patches within the occipital 
cortex. Considering the distribution of components, and the 
faster rebound in induced beta power in the occipital cluster 
(Figure 5b), we consider it likely that activity from early pro-
cessing areas of the visual cortex (e.g., V1) are more strongly 
represented in the occipital cluster than the surrounding pos-
terior clusters. This, however, cannot be confirmed with the 
spatial limitations of EEG and will require a methodology 
with greater spatial precision to test.

Although beta power modulation in response to visual 
rhythmic flashes has been seen before (Meijer et al., 2016; 
Saleh et  al.,  2010), to our knowledge this is the first time 
it has been shown predicting the onset of an omitted event. 
However, it has been questioned whether beta modulation is 
even related to temporal prediction at all (Meijer et al., 2016). 
Meijer et al. (2016) investigated beta activity with a rhythmic 
visual task and found beta power modulation in response to 
isochronous visual rhythms of different tempi (IOI’s of 1,050, 
1,350, 1,650 ms), yet the rate of beta power modulation was 
the same regardless of the tempo used. This is different from 
what was found by Fujioka et al. (2012) in their study of au-
ditory beta modulation, where the rate of beta power prior to 
tone onset was modulated by the tempo of the rhythm. Meijer 
et al. (2016) interpreted their result as evidence that beta ac-
tivity is not playing an entraining role in the visual system, 
suggesting instead that the beta peaks seen may be caused by 
rebounding activity in response to the flash, peaking roughly 
900  ms after event onsets. The current study provides the 
contrary evidence and suggests that beta modulation may be 

playing a role in prediction of the onset of visual events be-
cause the beta modulation during the omission could not be 
in response to any event and instead must be responding to 
the timing of the expected onset of the flash. Induced beta 
peaks <50 ms after the omission onset, or 650 ms after the 
onset of the prior stimulus (Figure 4), which is much earlier 
than would be expected for beta power rebound in response 
to the flash event, as described by Meijer et al. (2016). We 
suggest the reason for the discrepancy between Meijer et al.’s 
(2016) findings and those findings reported here may be 
due to their use of relatively slow tempi compared with the 
600 ms IOI of this study. Additionally, the task used in the 
Meijer et al. (2016) study was much more complicated than 
simply attending to the timing of the rhythms as in our task 
and demanded more attention and possibly competing re-
sources. There is evidence that sub- second timing and supra- 
second timing use different networks (see Wiener et al., 2010 
for a review). We, therefore, suggest beta synchronization 
may only be playing a predictive role in the sub- second time 
scale.

5.3 | Contribution of the motor system

Previous studies have described induced beta modula-
tion to auditory rhythms arising from sensorimotor corti-
ces (Fujioka et al., 2012, 2015). There is also evidence that 
auditory timing appears to rely on motor cortex (Iversen 
& Balasubramaniam,  2016; Janata et  al.,  2012; Repp & 
Su,  2013; Ross, Iversen, et al.,  2016; Ross, Warlaumont, 
et al., 2016) and motor networks with nodes in the parietal 
lobes, cerebellum, and basal ganglia (Levitin et  al.,  2018; 
Patel & Iversen, 2014; Repp & Su, 2013). This motor net-
work activity could indicate that the motor system is play-
ing an important role in predicting the timing of events in 
auditory rhythms, often discussed in the context of evolution 
of social activities such as dance and language (Fitch, 2016; 
Iversen,  2016; Patel,  2006). The auditory beta modulation 
from the sensorimotor clusters we present here is consistent 
with the narratives of the previous literature on the involve-
ment of the motor system for auditory timing. This can be 
contrasted with our findings from the visual system where 
there is no evidence of predictive beta timing in the bilateral 
sensorimotor clusters and instead evidence in the mid- central 
cluster that may be related to activity arising from the SMA.

In the auditory modality, we found evoked predictive beta 
timing activity in the left sensorimotor cluster (Figure 6a), 
yet we found evidence of induced predictive timing activity 
in the right sensorimotor cluster (Figure 7a). The asymmetri-
cal beta activity seen in the two sensorimotor clusters specific 
to the auditory conditions suggests hemispheric specializa-
tion specific to auditory processing. A recent meta- analysis 
on neural activation during music listening shows consistent 
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MRI activation in the right but not left primary motor cor-
tex during music listening tasks (Gordon et  al.,  2018). 
Interestingly, they found that studies that asked the subjects 
to move a body part while listening elicited stronger activ-
ity in the right primary motor cortex than studies using pas-
sive listening tasks. Others describe a left hemisphere role 
(Pollok et al., 2008) or non- motor- dominant hemisphere role 
(Kaulmann et al., 2017; Yadav & Sainburg, 2014) for motor 
timing. Similarly, for language perception there appears to 
be hemispheric specialization in the auditory cortices, with 
the left hemisphere specialized in temporal changes and the 
right hemisphere in spectral changes (Zatorre & Belin, 2001; 
Zatorre et al., 1992). Specifically, it has been shown that ac-
tivity in the left anterolateral superior temporal sulcus (STS) 
corresponds to processing of temporal aspects of speech per-
ception, whereas perception of spectral features of speech are 
associated with the same structure in the right hemisphere 
(Obleser et  al.,  2008). Our results support bilateral motor 
contributions to auditory timing, although the mechanism 
that results in predictive evoked activity in the left hemi-
sphere and induced beta activity in the right hemisphere may 
be distinct. In particular, the predictive evoked activity seen 
in the left sensorimotor cluster suggests a timing mechanism 
driving phase resetting at the expected tone onset not seen in 
the right sensorimotor cluster or any other cluster.

5.4 | Limitations and future directions

The current study reveals that timing and prediction for visual 
rhythm perception could use non- motor networks. We cannot 
say what role, if any, the motor system plays in visual timing. 
A closer look at the connections between visual and motor 
systems is needed to elucidate the issue. Using moving visual 
rhythms as opposed to flashing visual rhythms may elicit a 
different picture of activation as the visual system is better 
tuned to discerning temporal information when movement is 
present (Hove, Iversen, et al., 2013).

Another limitation of the current study is that we did not 
use multiple tempi. Having only one tempo makes it unclear 
how much the change in time course of neural activations 
is related to the tempo. Using multiple rhythms with differ-
ent tempi would allow for a clearer differentiation between 
tempo- dependent aspects of timing. If those tempi spanned 
both sub- second and supra- second interstimulus intervals, 
this would also provide insight to the temporal limits to the 
mechanisms in visual rhythm perception.

Although we see frequency band- specific oscillatory 
modulation during rhythm perception, caution should be used 
in assuming this is the brain's mechanism of timing. There 
is evidence for multiple mechanisms for timing (for review 
see Comstock et al., 2018; Wiener & Kanai, 2016; Wiener 
et  al.,  2010), and here we describe one reflection of these 

processes. Oscillatory dynamics likely reflect more broadly 
the mechanism for spreading information between or across 
networks, and timing perception is only a subset of neural 
communication happening during these tasks.

Additional investigation is needed into the differences 
seen between left and right motor contributions to auditory 
timing. Although the differences suggest possible functional 
lateralization in auditory rhythm perception, it is unclear if 
those differences are driven by handedness (Kaulmann et al., 
2017; Yadav & Sainburg, 2014) or other factors (Pollok et al., 
2008). Future studies are needed to look more closely at spe-
cific hemispheric contributions.

The inherent low spatial resolution of EEG limits how 
confidently we can draw conclusions about neural sources. 
We describe broad cortical source regions/networks in lieu of 
more focal sources with respect to this methodological lim-
itation but argue that the ICA- based cluster analysis leads to 
reasonable spatial and functional grouping of neural activ-
ity likely from common sources. That being said, we cannot 
speak with certainty about the exact cortical sources of the 
activity we describe. A method with better spatial resolution 
that retains fine temporal resolution, such as MEG or ECoG, 
would provide better source resolution for predictive rhythm 
perception networks.

The baseline differences we find in some clusters suggest 
habituation to the non- omission condition not seen in the 
omission condition. Although these baseline differences do 
not directly impact many of the analyses used, nor impact our 
main findings, they do suggest that future studies should be 
designed in such a way to avoid unequal habituation to the 
signal. We also cannot rule out the possibility that unequal 
baselines could reflect differences in neural activation that 
may have indirect effects on neural dynamics. We think it 
unlikely that such differences would impact neural activity 
in such a way to impact our findings; however, study designs 
that avoid this possible confound would produce stronger 
results.

Finally, the nature of this work was primarily to investigate 
and explore predictive timing markers across auditory and 
visual modalities in beta activity. Although the exploratory 
work is often a necessary step in surveying the landscape of a 
given problem, it can be prone to interpretive biases. For this 
reason, the exploratory portions of our work should be taken 
primarily as a guide for further experiments to understand 
predictive beta activity and differences between the mecha-
nisms of auditory and visual rhythm perception.

6 |  CONCLUSIONS

We investigated the mechanisms of prediction for audi-
tory and visual rhythms using an omission paradigm. In 
confirmation of our hypotheses, the results described here 
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support theories of predictive timing in both visual and 
auditory modalities, that can be observed in beta band os-
cillatory activity. Using an exploratory ICA spatial cluster- 
based approach, our results also support that visual and 
auditory prediction for rhythmic events may be subserved 
by modality- specific cortical networks, although we can-
not rule out the possibility that both auditory and visual 
networks are subserved by a common subcortical network. 
We describe all clusters resulting from the blind source 
separation technique in detail, and these results suggest in-
duced beta activity predicting the expected onset of visual 
rhythmic events bilaterally in temporal/parietal clusters, in 
a dorsal medial cluster, a parietal cluster, and a right hemi-
sphere frontal cluster. We also show evidence for induced 
beta activity predicting the expected onset of rhythmic au-
ditory events bilaterally in sensorimotor clusters, in a pari-
etal cluster, and in a right hemisphere frontal cluster, and 
evidence for evoked auditory predictive timing in a left 
motor cluster. These findings suggest that auditory timing 
may involve hemisphere- specific activity, and reliance on 
motor networks not seen in visual timing.
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