J Neurophysiol 108: 1167-1175, 2012.
First published May 23, 2012; doi:10.1152/jn.00691.2011.

Multijoint error compensation mediates unstable object control

Tyler Cluff,"> Aspasia Manos,>* Timothy D. Lee,"” and Ramesh Balasubramaniam'~
"McMaster Integrative Neuroscience Discovery and Study (MiNDS), McMaster University, Hamilton, Ontario, Canada;

2Sensorimotor Neuroscience Laboratory, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada;

and 3Department of Psychology, Neuroscience, and Behavior, McMaster University, Hamilton, Ontario, Canada

Submitted 25 July 2011; accepted in final form 23 May 2012

Cluff T, Manos A, Lee TD, Balasubramaniam R. Multijoint
error compensation mediates unstable object control. J Neuro-
physiol 108: 1167-1175, 2012. First published May 23, 2012;
doi:10.1152/jn.00691.2011.—A key feature of skilled object con-
trol is the ability to correct performance errors. This process is not
straightforward for unstable objects (e.g., inverted pendulum or
“stick” balancing) because the mechanics of the object are sensi-
tive to small control errors, which can lead to rapid performance
changes. In this study, we have characterized joint recruitment and
coordination processes in an unstable object control task. Our
objective was to determine whether skill acquisition involves
changes in the recruitment of individual joints or distributed error
compensation. To address this problem, we monitored stick-bal-
ancing performance across four experimental sessions. We con-
firmed that subjects learned the task by showing an increase in the
stability and length of balancing trials across training sessions. We
demonstrated that motor learning led to the development of a
multijoint error compensation strategy such that after training,
subjects preferentially constrained joint angle variance that jeop-
ardized task performance. The selective constraint of destabilizing
joint angle variance was an important metric of motor learning. Finally,
we performed a combined uncontrolled manifold-permutation analysis to
ensure the variance structure was not confounded by differences in the
variance of individual joint angles. We showed that reliance on multijoint
error compensation increased, whereas individual joint variation (primar-
ily at the wrist joint) decreased systematically with training. We propose
a learning mechanism that is based on the accurate estimation of sensory
states.

inverted pendulum; motor learning; motor variability; object manip-
ulation; unstable dynamics

OBJECT MANIPULATION IS CENTRAL to many of the activities that we
perform in daily life, and often, the objects that we control are
unstable. Common examples include the waitress that balances a
tray of drinks while maneuvering through a crowded restaurant or
cyclists who navigate rush-hour traffic, avoiding pedestrians and
vehicles while staying upright on their bicycles. In each of these
tasks, the object is balanced at an unstable equilibrium and
controlled through the interaction between the intrinsic object
dynamics and applied forces (i.e., motor commands).

A number of studies have investigated unstable object control
using an inverted pendulum (stick) balancing task (Cabrera and
Milton 2002; Cabrera et al. 2004; Cluff and Balasubramaniam
2009; Cluff et al. 2009; Foo et al. 2000; Loram et al. 2009, 2011;
Treffner and Kelso 1999) and have shown that performance is
dependent on the accurate estimation of sensory states (Mah and
Mussa-Ivaldi 2003; Mehta and Schaal 2002) and intermittent,
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time-delayed feedback control (Milton et al. 2009). The focus,
however, has been to characterize the control mechanism at the
hand, and we know little about the importance of joint recruitment
and coordination processes in redundant object control tasks. This
experiment examines motor learning in the stick-balancing task.
We focus on two important aspects of coordination and charac-
terize their role in motor skill acquisition: individual joint recruit-
ment (task sharing) and multijoint error compensation.

The task-sharing perspective was pioneered by Bernstein’s
treatise on the coordination and control of voluntary movement
(Bernstein 1967). Bernstein proposed that skilled motor behavior
is acquired in three incremental stages that progress from learning
to control to incorporating joint-space degrees of freedom (DOF)
into task performance. Joint angle variances and paired joint angle
excursions have been used extensively to evaluate the skill-
dependent recruitment of individual joints (cf. Temprado et al.
1997). The recruitment of individual joints and the emergence of
paired joint angle correlations have been reported for the acqui-
sition of various motor skills, including ball bouncing (Broderick
and Newell 1999), dart throwing (McDonald et al. 1989), simu-
lated skiing (Vereijken et al. 1992), and the racquetball forehand
shot (Southard and Higgins 1987).

The relationship between joint angle variance and outcome
performance is confounded, however, by the equivocal mapping
between individual joint trajectories and motion at the end effector
(Lacquaniti and Soechting 1982; Polit and Bizzi 1978). It is
therefore plausible that skilled performers engage a flexible mul-
tijoint control strategy that stabilizes task performance (Latash
2000; Latash et al. 2002, 2007; Yang and Scholz 2005). A very
useful technique to investigate multijoint error compensation is
the uncontrolled manifold (UCM) method (Scholz and Schoner
1999), which decomposes motor variance into two distinct com-
ponents: /) variance that stabilizes performance (V) and
2) variance that destabilizes performance (Vogr). In the context of
our study, Ve refers to joint angle configurations that map
equivalently onto the task goal and stabilize the time-varying
fingertip position (task-irrelevant variance). Conversely, Vg 1S
the orthogonal joint variance component that destabilizes outcome
performance (task-relevant variance). If the fingertip position is
controlled by distributed error compensation, we expect the neural
controller to permit variance in the UCM subspace (V) While
constraining joint angle trajectories that jeopardize task perfor-
mance (Vogr)-

We examined the joint angle variance structure using a
link-segment model that mapped six independent joint angles
onto the time profile of the fingertip (i.e., the sagittal plane
coordinates of the balancing pivot). We hypothesized that
unstable object control would be mediated by multijoint error
compensation and that the selective constraint of destabilizing
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joint angle variance would emerge with training. Indeed, we
show that motor learning caused the selective control of de-
stabilizing joint angle variance (Vi) but did not affect the
flexible corrections that stabilized task performance (Vycp)-
Finally, we provide evidence for distinct but overlapping motor
learning processes. In early learning, we show that subjects
stabilized performance by emphasizing corrections at the wrist
joint (individual joint variation strategy) but favored distrib-
uted error compensation between joint angle trajectories later
in training (multijoint error compensation strategy).

METHODS

Subjects. Eight healthy subjects (5 males, 3 females; age = 24.5 =
2.4 yr) participated in the study. The subjects were right-handed, had
normal or corrected vision, and reported no musculoskeletal or neu-
rological disorders. Before the experiment, each subject attended a
recruitment session that outlined the purpose of our study and time
commitment. The protocol was approved by the McMaster University
Research Ethics Board, and participants provided written informed
consent. The participants were compensated for their time and could
withdraw from the study at any time without penalty (none did so).

Protocol. We asked that subjects perform 20 balancing trials (2
blocks X 10 trials) during the initial recruitment/briefing session to
familiarize themselves with the task. During the familiarization trials,
the subjects balanced a cylindrical wooden dowel (stick) with differ-
ent physical properties (length = 100 cm; diameter = 1.71 cm; mass = 150
g) than the stick used for the experiment and practice sessions (length = 62
cm; diameter = 1 cm; mass = 50 g). By increasing the moment of inertia
of the stick about the balancing pivot, we provided additional time for
corrective limb displacements. We reasoned that familiarization trials
would ensure that subjects understood the task but that this would transfer
marginally to the experiment (cf. Braun et al. 2009). We recorded each
subject’s preferred foot placement to ensure the balancing posture was
consistent between trials and learning sessions.

Each subject attended daily practice sessions conducted at the
laboratory. Because the length of each trial (balance until failure)
varied by participant and across practice sessions, there was not a
fixed number of practice trials. Instead, the subjects practiced for 30
min per session. We maintained a log to ensure that each subject
satisfied these practice requirements.

Motor learning was monitored in four experimental sessions (~90
min, including subject preparation time) that we conducted every
fourth day during the 2-wk training period. The experimental sessions
consisted of 20 trials (2 blocks X 10 trials) that ended when the
subject dropped the stick. We instructed subjects to balance the stick
for as long as possible (balance until failure) and maintained consis-
tent postural alignment by ensuring that subjects aligned their feet
with their preferred stance. If the preferred balancing stance was not
maintained during trial performance, we repeated data collection for
that trial. Individual trials were separated by a minimum of 30 s, and
blocks of trials were separated by a 5-min rest period. We supple-
mented the allotted rest breaks at the subjects’ request to alleviate
discomfort due to visual strain and physical or attentional fatigue.

Equipment and apparatus. We recorded body segment kinematics
using 14-mm spherical reflective markers positioned over surface ana-
tomical landmarks that provide an approximation to the joint centers of
rotation (ankle joint: lateral malleolus; knee joint: lateral femoral condyle;
hip joint: greater trochanter; shoulder joint: inferior to the lateral aspect of
the acromion process; elbow joint: lateral humeral condyle; wrist joint:
styloid process of the radius). We also attached 14-mm reflective markers
to the top and bottom of the stick. The marker coordinates were recorded
at a sampling rate of 750 Hz using a 10-camera VICON T-40 motion
capture system (Lake Forest, CA).

Data reduction. The three-dimensional data were reconstructed and
autolabeled off-line by using link-segment models constructed for each

subject with the VICON Nexus software. We low-pass filtered the data
(10-Hz effective cutoff, 2nd-order, dual-pass Butterworth) in Matlab
(R2009a; The MathWorks, Natick, MA). A bidirectional digital filter was
used to minimize artificial phase shifts induced by the filtering algorithm.

Angle calculations. We restricted the analysis to the right-side (i.e.,
balancing side) sagittal plane joint kinematics and calculated the
ankle, knee, hip, shoulder, elbow, and wrist joint angles at each data
sample using the filtered marker coordinates. The link-segment model
and marker placements are outlined in Fig. 1. We calculated sagittal
plane joint angles using the formula

Fig. 1. Schematic of the experimental setup showing the reflective markers
(circles) used to construct the link-segment model (solid line). Sagittal plane
joint angles (6) were calculated for the ankle, knee, hip, shoulder, elbow, and
wrist joints. Joint angles were defined relative to the right horizontal (dashed
horizontal lines), and the angle of the stick was defined relative to the vertical
(dashed vertical line).
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0, = arctan2 ,
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where 6, corresponds to the joint angle about the ith joint, & corre-
sponds to the unit vector directed along the right horizontal, and v is
the unit vector corresponding to the limb segment proximal to the ith
joint of the link-segment model. The joint angles were defined relative
to the right horizontal with positive angles in the counterclockwise
direction. We used the same formula to calculate the stick angle with
respect to vertical; however, for stick angle calculations, « is the unit
vector directed along the upward vertical and v is the unit vector of
the sagittal plane stick coordinates. Positive stick angles were defined
in the counterclockwise direction. We removed the first and last 3 s of
trial data to confine the analysis to steady-state balancing processes
and avoid transient adjustments at the onset and just before the end of
each trial.

Mean balancing time and root-mean-square vertical stick angle.
We computed the mean balancing time as the arithmetic mean trial
length performed by subjects in each experimental session. In addition
to the mean balancing time measure, we computed subject-specific
root-mean-square (RMS) stick angles for each experimental session.
We used these dependent measures to examine changes in stick-
balancing performance.

Variance of individual joint angle excursions. We calculated the
variance of angular joint excursions to examine changes in the
recruitment of individual joints during motor learning. We first deter-

y finger

where 0,1 c> Oxnees - - - » Owrise are the sagittal plane joint angles,
and Lane Lnighs - - - > lhana are the segment lengths that we
calculated from marker coordinate data averaged over the first 3 s

- lshanksuleankle - lthighsuleknee - ltrunkmnehip

K®=[

lthighcoS Okncc ltrunkcoS Ohip

lshunkcoS Oanklc

Our second step was to compute the linear approximation of
individual joint angles onto the invariant joint configuration subspace
(UCM). This step required specification of the referent joint config-
uration at each normalized time sample. For each trial, the local
angular stick maxima were used to partition joint motion profiles into
successive corrections (see Variance of individual joint angle excur-
sions). The joint angle time series were ensemble-averaged at each
normalized sample to determine the time-varying referent joint con-
figurations. Our method is a within-trials UCM analysis that examines
distributed, online error compensation between joint angles (Ranga-
nathan and Newell 2008; Scholz et al. 2003).

We used the referent joint configuration to compute the UCM at
each normalized time sample. The linear approximation to the UCM
was calculated by determining the null-space of the Jacobian matrix
with respect to the referent joint configuration. The null-space of the
Jacobian matrix was calculated by singular value decomposition in
Matlab. We then calculated the angular deviation matrix by subtract-
ing each joint angle from its respective referent angle, projected it
onto the null-space of the Jacobian, and computed the square-norm.
We used this projection to provide a scalar estimate of how consistent
the joint-space configuration was with the referent finger coordinate at
that time sample; we used the complement to estimate the extent to
which the joint configuration destabilized the instantaneous finger
coordinates. The variances within the UCM (V) and orthogonal

mined the occurrence of successive corrections based on local max-
ima in the angular stick profile. For each trial, we partitioned the joint
angle kinematics into time profiles with beginning and end points
defined by these local maxima. Each corrective displacement was
normalized to 101 points (%correction) by linear interpolation. For
every subject, we calculated the variance of individual joint angles for
corrective movements performed within each trial and averaged this
measure across trials within each session.

Correlations between individual joint excursions. To investigate
change in the coupling of individual joints, we calculated the zero-lag
cross-correlation coefficient between all combinations of paired joint
angle time series. The cross-correlation coefficients were calculated
for each individual trial and then averaged across trials in each
session. The sign of the cross-correlation specifies the direction of
coupling, whereas the magnitude indicates the degree of coupling
between body segments; the more independent the joint motions, the
closer the coefficient would be to zero. Negative correlations reflect
error compensation between paired joint angle trajectories.

Joint variance and its relationship to performance stability. The
mathematical methods for the UCM analysis have been described
elsewhere in detail (Scholz and Schoner 1999). Our initial step was to
specify a link-segment model that related individual sagittal plane
joint angles to the hypothesized finger coordinate control variables
(Milton et al. 2009). We constructed a link-segment model that
consisted of six sagittal plane joint angles. The link-segment model
relating the joint configuration to the sagittal plane finger coordinates
at each sample was

|:xfingcr:| o [lshankcosoanklc + lthighcos Okncc + lLrunkCOSOhip + luppcr u.rmcoseshouldcr + lforcarmcoseclbow + lhandcosewrist]
- 9

lshankSIHGankle + lthighsnleknee + ltrunkSIHGhip + lupper armsnleshoulder + lforearmSIHOelbow + lhandsnlewrist

of each trial. The individual joint angles were mapped onto the
time-varying finger coordinates using the Jacobian matrix J(6) =
dF/00,;:

- lupper annsuleshoulder - lforearm51neelbow - lhamdSH1 Owrist

l cosf cosf ThandCOS Oyist ]

upper arm shoulder l forearm elbow

subspace (Vogy) were normalized to the dimension of the subspace
(DOFycm = 4, DOFgrr = 1), the number of samples (n = 101
samples), and the number of corrections, which varied from trial to
trial. We used the UCM ratio, defined as variability within the UCM
relative to the orthogonal joint configuration subspace (UCM,,;, =
Vuem/Vort)s to determine whether learning evoked multijoint error
compensation. A UCM,,;, value >1 would demonstrate that selective
error compensation is used to stabilize the time-varying finger coor-
dinate profile.

Decomposition of multijoint covariation and individual joint vari-
ation strategies. A potential caveat of the UCM analysis is that the
joint angle variance structure may arise from the inequality of vari-
ances between measured joint angles (individual joint variation) and
not from joint angle deviations that compensate for one another
(multijoint error compensation) (cf. the proof in Appendix B, Yen and
Chang 2010). To determine the effect of individual joint angle
variances, we computed the UCM ratio of a surrogate data set formed
by joint angle permutation among all corrections performed by sub-
jects in each experimental session. The joint angle permutation was
performed at each normalized time sample by combining the wrist
joint angle with every measured ankle, knee, hip, shoulder, and elbow
joint angle in all possible combinations. The surrogate data set
removed covariation between joint angles, but left the individual joint
angle variances the same as in the original data set. If the UCM
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analysis on this surrogate data set revealed selective stabilization of
the fingertip position (InV = UCM,,,;, of the surrogate data set), this
result would show that the calculated joint variance structure was
confounded by the inequality of individual joint angle variances. To
determine the amount of fingertip stabilization that arose from mul-
tijoint error compensation (CoV), we took the difference between the
UCM,,;, of the original and surrogate data sets (CoV = UCM, ;o —
InV). The CoV measure specifies the amount of covariation used to
stabilize the time-varying fingertip position. A CoV value of 0 would
show the joint angle variance structure in the UCM analysis arose
from the inequality of individual joint angle variances. Conversely, a
CoV value equal to the UCM,,,;, from the original data set would
show that subjects use selective multijoint compensation to stabilize
the fingertip position.

To further characterize the contribution of the individual joint
variation and multijoint covariation strategies, we computed the rel-
ative stabilization index (RSI = CoV/UCM,,,,). An RSI value of 1
would demonstrate that subjects use multijoint covariation to stabilize
the time-varying fingertip position, whereas an RSI value of 0 would
show that subjects stabilize the stick using individual joint recruit-
ment. An RSI value of 0.5 would show that subjects stabilize the stick
using equal contributions from the individual joint and multijoint
covariation strategies.

Relationship between the variability ratio and performance. We
performed linear regression analysis in each experimental session and
calculated Pearson’s product-moment correlation coefficients to ex-
amine the relationship between balancing time and the UCM, .
Positive correlation between the UCM,,,;, and mean balancing time
would demonstrate that performance is dependent on the degree of
error compensation between joints. We were interested in the rela-
tionship between coordinated feedback control and stick-balancing
performance.

Statistical analysis. For every dependent measure, we averaged
individual subject data across trials performed in each session. We
used separate one-way repeated-measures analysis of variance
(ANOVA) to quantify changes in balancing time and the RMS
vertical stick angle across experimental sessions (4 levels: sessions
1-4). Similarly, we performed separate one-way repeated-measures
ANOVA for each individual joint angle (ankle, knee, hip, shoulder,
elbow, and wrist joint) to determine whether the variances of joint
excursions were affected by motor learning. In addition, we per-
formed two-way repeated-measures ANOVA to determine if the
organization of angular joint variance (2 levels: Vycy and Vogry)
differed between experimental sessions (4 levels: sessions 1-4).
Finally, we log-transformed the UCM,;, [UCM,,;, = In(UCM, ;)]
to correct for deviations from normality (Kolmogorov-Smirnov test,
P < 0.05) and contrasted it across sessions using a one-way repeated-
measures ANOVA. For the UCM-joint angle permutation analysis,
we performed separate repeated-measures ANOVA for the CoV and
RSI variables. All post hoc mean comparisons were performed using
paired #-tests with Holm-Bonferroni corrections (Holm 1979). We
performed the statistical analyses in PASW (version 18.0; SPSS,

>

Chicago, IL) with the significance level set to a = 0.05. Pairwise
mean differences and corrected P values are reported in the text and
Figs. 2-6.

RESULTS

Mean balancing time and RMS stick angle. Mean balancing
time showed a marked learning effect [F(3, 21) = 22.86, P <
0.001, Fig. 2A], and post hoc comparisons confirmed that
balancing time increased across training sessions (session 4 >
sessions 1 and 2, session 3 > session I; all P < 0.05).
Similarly, we found the vertical stick angle was more stable
late in the learning paradigm relative to the onset of training
[F(1.38, 9.62) = 5.44, P < 0.05, Fig. 2B]. The effect was
confirmed by post hoc analysis, which demonstrated that the
RMS stick angle decreased across experimental sessions (ses-
sion 4 > sessions 1 and 2; all P < 0.05). In the following
sections, we interpret individual joint recruitment and multi-
joint error compensation mechanisms in relation to the perfor-
mance changes that accompanied motor learning.

Individual joint angle variances and the relationship be-
tween joint excursions. The top panels of Fig. 3 show the
variability of the ankle (A), knee (B), and hip joints (C)
ensemble-averaged across subjects. In contrast to the variance
of lower limb joints, the bottom panels of Fig. 3 show that
shoulder (D), elbow (E), and wrist excursions (F) were sub-
stantially more variable. The statistical analysis demonstrated
that whereas the variance of ankle [F(2.09, 14.65) = 3.39, P >
0.05], knee [F(1.16, 8.82) = 1.16, P > 0.05, Huynh-Feldt
correction], hip [F(3, 21) = 2.26, P > 0.05], shoulder [F(3, 21) =
2.47, P > 0.05], and elbow excursions [F(3, 21) = 1.69, P >
0.05] were approximately constant, learning caused a reduction
in wrist joint variance [F(3, 21) = 5.58, P < 0.001]. Post hoc
comparisons confirmed that the variability of wrist joint ex-
cursions decreased across training sessions (session 4 < ses-
sion 1; P < 0.05). To verify that each joint was engaged in task
performance, we used directional #-tests that compared the
individual joint angle variances in each session with a test
value of 0 rad. In every experimental session, we found that
each individual joint was recruited for task performance (sin-
gle-sided r-tests, all P < 0.05).

We subsequently performed cross-correlation analyses to
determine whether changes in performance were related to
straightforward covariation between paired joint angle trajec-
tories. Before statistical analysis was performed, the zero-lag
cross-correlation coefficients were log-transformed [r = In(r)]
to correct for deviations from normality (Kolmogorov-Smir-
nov test, P < 0.05). We found that performance was subserved
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Fig. 3. Variance (V) of joint angle excursions at the ankle (A), knee (B), hip (C), shoulder (D), elbow (E), and wrist joints (F) by experimental session. Joint
angle variance was small in the lower relative to the upper extremity joints. Each bar denotes the between-subjects standard deviation across trials performed

in that session. Error bars represent the within-subjects SE. *P < 0.05.

by a complex set of correlated joint angle excursions. Table 1
shows the correlation between individual joint excursions was
at best moderate (in most cases r << 0.70) and unaffected by
training (all P > 0.05). To further understand the interdepen-
dence of the individual joint kinematics, we performed a
within-trials UCM analysis, which allowed us to interpret
differences in the joint angle variance structure evoked by
motor learning.

Ratio of variability: structure of joint configuration variabil-
ity related to the stability of the finger coordinate control
variable. Figure 4 plots Vycym (A) and Vgt (B) derived from
the link-segment model (Fig. 1) that related the independent

Table 1.

angle trajectories

Average zero-lag cross-correlation between paired joint

Joint Pair Session 1 Session 2 Session 3 Session 4
Ankle-knee 041 £020 029=*0.12 0.50=*=022 044 *+0.22
Ankle-hip 0.16 =0.14 0.20=*=0.12 020 =020 0.19 =0.18
Ankle-shoulder  0.20 = 0.20 029 £0.10 0.33 £0.08 0.20 = 0.18
Ankle-elbow 0.15*+0.14 0.19*=0.12 027 *=0.10 0.19 =0.12
Ankle-wrist 022 *0.12 0.16*=0.16 0.16=0.14 0.16 =0.10
Knee-hip 0.27 £036 0.26+0.28 028 +0.36 0.28*+0.14
Knee-shoulder 038 £0.20 043 *=0.18 046=*=020 041 *0.14
Knee-elbow 0.50 £0.18 0.53*+022 052*+022 051=*0.14
Knee-wrist 0.16 =028 0.16 2024 0.18=0.20 0.17 =0.08
Hip-shoulder 0.19 020 020=*=0.16 0.15*=0.18 024 +0.14
Hip-elbow 040 £0.16 0.30=*=0.18 029=*=0.18 045*=0.10
Hip-wrist 024 £0.18 021 =0.10 024 *=0.14 0.28 =0.10
Shoulder-elbow  0.52 =0.12 0.62 = 0.14 0.67 £0.04 0.62 £0.10
Shoulder-wrist 0.11 £0.12 0.15*=0.18 0.09+0.22 0.14 =0.16
Elbow-wrist 046 £0.14 044 *=0.18 0.26=*=024 046 =0.10

Results are between-subjects averages = 95th-centile confidence interval of
the mean (all P > 0.05).

joint angles to the finger coordinate control variable. Two-way
ANOVA revealed that the variance distributed along the UCM
subspace (Vyewms Fig. 4A) was significantly larger [F(1, 7) =
7.42, P < 0.03] than the variance in the orthogonal direction
(Vort» Fig. 4B). In addition, there was a significant session-
by-variance component interaction [F(3, 21) = 8.46, P =
0.001] that we decomposed by planned univariate comparisons
(simple main effects). The planned comparisons demonstrated
that although there was no change in Vycy [F(3, 21) = 0.64,
P > 0.05, Fig. 4A], training caused a substantial reduction of
Vorr [F(3, 21) = 8.00, P < 0.001, Fig. 4B]." Vorr Was
greatest at the outset of training but decreased monotonically
(all P < 0.05) to demonstrate that multijoint error compensa-
tion minimized the deleterious effects of joint angle variance.
The effect is further summarized by the covariance ellipses in
Fig. 5, which show the systematic reduction of Vg across
experimental sessions. We confirmed this effect using the
UCM, i, Which was defined as the relative variance per DOF
in each joint variance subspace. The UCM,,,;, increased with
training to show that subjects constrained joint configurations
that jeopardized task performance [F(3, 21) = 12.68, P <
0.001, Fig. 4C]. The results confirmed our experimental hy-
pothesis and demonstrated that learning led to flexible multi-
joint corrections that selectively minimized destabilizing joint
angle variance.

To ensure the joint variance structure calculated by the UCM
analysis arose from multijoint compensation and not individual
joint variation, we performed a combined UCM-permutation
analysis using the surrogate data set that consisted of the wrist
joint angle paired with every combination of ankle, knee, hip,
shoulder, and elbow joint angle at each normalized time
sample. We calculated the UCM of the permuted data set

ratio
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Fig. 4. Mean joint configuration variability per degree of freedom aligned on the uncontrolled manifold (V¢y; A) and the orthogonal subspace (Vogrs B), and
the ratio of variance aligned on the UCM relative to the orthogonal joint configuration subspace (UCM,,;.; C). In D and E, the results of the surrogate UCM
analysis are contrasted with the original UCM analysis. Multijoint error compensation (CoV) increased across training sessions (D), which demonstrates that
motor learning decreased emphasis on the individual joint recruitment strategy, since CoV accounted for a greater proportion of the joint angle variance structure
across training sessions (relative stabilization index, RSI; E). Gray lines correspond to individual subject data; black lines plot the average across subjects. Error

bars represent the within-subjects SE. *P < 0.05; **P < 0.01.

(InV) and found the amount of multijoint CoV by subtracting
InV from the UCM,,;, of the original data set. One-way
ANOVA showed that training caused a systematic increase in
multijoint covariance [F(1.45, 10.17) = 53.32, P < 0.001,
Huynh-Feldt correction]. We confirmed this result using post
hoc comparisons and found that multijoint error compensation
was smallest at the start of training but increased across
experimental sessions (all P < 0.05, Fig. 4D). Thus, with
training, the subjects used flexible multijoint corrections that
stabilized the time-varying fingertip position. We further ana-
lyzed the contribution from individual joint and multijoint
compensation strategies by computing the RSI, which we
defined as the ratio between multijoint CoV and the UCM, .,
of the original data set. We found that motor learning influ-
enced the RSI [F(3, 21) = 5.86, P < 0.01], and post hoc
comparisons showed that the RSI was greater in the last
relative to the first experimental session (session 4 > session 1,
P < 0.05). In summary, we found that subjects relied increas-
ingly on the multijoint covariation strategy (CoV) and less on
the individual joint variation strategy (InV) across training
sessions (Fig. 4, D and E).

Relationship between error compensation mechanisms and
performance. We performed a linear regression analysis and
found a significant linear relationship between the UCM

ratio

and stick-balancing performance (Fig. 6). In each experimental
session, the subjects who controlled multijoint kinematic error
performed best at the stick-balancing task [session I: F(1, 6) =
8.07, P < 0.05, R?> = 0.573: session 2: F(1,6) = 1531, P <
0.01, R* = 0.718; session 3: F(1, 6) = 8.33, P < 0.05, R* =
0.580; session 4: F(1, 6) = 26.63, P < 0.01, R* = 0.804].

DISCUSSION

We undertook this experiment to examine changes in the co-
ordination and control of individual joints during the acquisition
of an unstable object control task. We examined individual joint
recruitment patterns and performed a within-trials UCM analysis
that examined changes in the structure of joint angle variance. We
focused on the differential management of multijoint variance that
stabilized (V) and destabilized (Vorp) the time-varying fin-
gertip position with the objective to characterize the coordination
mechanisms underlying redundant unstable object control tasks.
This study is the first to differentiate skill-related differences in
multijoint covariation and individual joint recruitment strategies in
an unstable object control task.

A key finding in this experiment was that the variance of
individual joint angle excursions did not increase with learn-
ing, and in contrast, we found a systematic reduction in wrist
joint variance across training sessions. This result was con-
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firmed by the combined UCM-joint angle permutation analy-
sis, which showed that stabilization arising from the individual
joint variation strategy decreased systematically across exper-
imental sessions. Another important result was that the zero-
lag cross-correlation coefficient between paired joint angle
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Fig. 6. Relationship between mean balancing time and the variability ratio
(Vuem?Vort): Vuem!Vort Was correlated with the mean balancing time such
that subjects who selectively minimized Vg performed better at the stick
balancing task. Circles represent individual subject data ensemble-averaged
across corrections performed in each experimental session.

trajectories was of moderate strength, at best, but was in
general well below 0.5, which demonstrates that correlated
joint recruitments were too weak for any one pair of joints to
have underscored the incremental changes in task performance.
In summary, our results do not directly support the argument
that motor learning consists of three incremental stages differ-
entiated by the initial freezing (or equivalently, rigid control)
and progressive recruitment (or flexible control) of individual
joints (Bernstein 1967), but corroborate growing evidence
which shows that skill acquisition in multijoint motor tasks
involves flexible, task-dependent joint recruitment strategies
(Buchanan and Horak 1999; Konczak et al. 2009).

There are two mechanisms that may account for the decrease
in wrist joint variance reported in this study. The first mecha-
nism is that destabilizing wrist displacements may have arisen
due to the inappropriate control of interaction torques gener-
ated during the upper limb corrections (Atkeson 1989); how-
ever, the mass of the stick (50 g) would have had negligible
effect on the upper limb and would likely have been offset by
neural mechanisms that compensate for the complexity of
upper limb joint motion (Gribble and Scott 2002; Kurtzer et al.
2008). The second mechanism is that the wrist joint may have
compensated for balancing errors in early learning and was
recruited progressively less as participants learned the stick-
balancing task. A similar compensatory mechanism has been
proposed for the reduction of lower limb joint variance when
participants learn to control posture in the presence of sinusoi-
dal platform oscillations (Ko et al. 2001).
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The reduction of wrist joint variance in this study is consis-
tent with motor learning experiments that examined joint angle
variance (Anderson and Sidaway 1994; Young and Marteniuk
1998) in both single-joint (Gabriel 2002) and multijoint tasks
(Timmann et al. 2001) but is difficult to interpret because the
redundancy of multijoint motion does not provide any straight-
forward mapping between joint angle trajectories and the
kinematics of the end-effector (Latash 2000). In view of this
limitation, we performed a UCM analysis that probed the
complex structure of the multijoint kinematics.

A noteworthy finding was the differential management of joint
angle variance that developed across experimental sessions. We
reported a progressive decrease in overall joint angle variance and
demonstrated that this effect was caused by the selective reduction
of variance in the subspace of destabilizing joint angle configu-
rations (Vorp)- Learning caused a systematic increase in the
UCM,,;,» Which reflects error compensation between joints so
that if the contribution of one joint perturbed the instantaneous
finger position, the configuration of other joints was modified to
stabilize it. We also performed a correlation analysis and found
that the magnitude of the UCM,,;, was an important determinant
of stick-balancing performance, which demonstrates that the se-
lective and progressive constraint of Vg was associated with
better task performance.

A number of studies have shown that skill acquisition
changes the partitioning of motor variance between task-rele-
vant (Vorr) and task-irrelevant (Vycy) dimensions, but there
has been a lack of consensus as to how motor learning affects
the structural distribution of variance in redundant motor tasks
(Latash et al. 2007). For example, studies have reported larger
(Domkin et al. 2002), equal (Domkin et al. 2005), and smaller
decreases (Yang and Scholz 2005) in V), relative to simul-
taneous decreases in Vggp. These considerations have
prompted a number of explanations, including optimization
criteria imposed to constrain motor responses (Domkin et al.
2002, 2005) and a lack of novelty or insufficient training
(Domkin et al. 2002).

In contrast, we demonstrated that motor learning evoked the
selective reduction in Vg, and our results are consistent with
the Frisbee task investigated by Yang and Scholz (2005),
where subjects exhibited less motor variance on average, and
this reduction was largely confined to solutions that jeopar-
dized the outcome of the toss. In the present study, we reported
a similar reduction in joint angle variance, but our effect arose
from the constraint of destabilizing joint configurations com-
bined with the simultaneous reduction of variance at the wrist
joint. In consideration of these findings, two important ques-
tions are, what is the significance of Vi, and why did it
decrease by more than 50% across training sessions?

The goal-specific processing of sensory feedback is a key
attribute of skilled motor behavior (Scott 2004). The confluence
between sensory feedback and voluntary control processes has
been formalized by the optimal feedback control framework
(OFC) (Todorov and Jordan 2002), which suggests that the central
nervous system constructs modifiable, task-dependent feedback
control policies that transform sensory feedback into optimal
motor responses (Diedrichsen et al. 2010). According to OFC,
successful behavior is dependent on two interrelated neural pro-
cesses: state estimation and feedback control. It has been demon-
strated that state estimation processes rely on neural representa-
tions that encode the physical properties of our limbs (Flanagan

and Lolley 2001), environment (Gribble and Scott 2002), and
manipulated objects (Mah and Mussa-Ivaldi 2003), and a com-
mon argument is that these force-motion models are acquired
before the development of task-specific feedback control policies
(Flanagan et al. 2003).

In our study, it is possible that the progressive reduction in
Vorr reflects the acquisition of accurate state estimation pro-
cesses. This would situate our data in the context of work by
Mehta and Schaal (2002), who used visual feedback occlusion
(600 ms) and perturbing force pulses to show that state estimation
processes are intimately linked to human balance control. We
argue that the systematic reduction in wrist joint variance is well
explained by Mehta and Schaal’s (2009) stick-balancing experi-
ment: because the hand is the terminal segment of the upper limb
and possesses the least segmental inertia, a high-gain feedback-
corrective mechanism could enable rapid, independent corrections
to be performed at the wrist joint. As subjects learned the trans-
formation between applied upper limb forces and the motion of
the stick, the corresponding motor commands would reflect the
state of the stick, reduce error, and thereby decrease emphasis on
these compensatory wrist displacements. This learning mecha-
nism was supported by the outcome of the UCM-joint angle
permutation analysis, which demonstrated that the reduction in
individual joint variation was accompanied by a concomitant
increase in multijoint covariation: as subjects learned the task,
they relied less on the control of individual joints and more on
distributed error compensation, and this transition was accompa-
nied by improved performance. Similar control mechanisms have
been proposed when participants learn to control posture in the
presence of sinusoidal platform oscillations (Ko et al. 2001) and
during the stabilization of the vertical ground reaction force in
externally paced human hopping tasks (Yen and Chang 2010). For
example, Yen and Chang (2010) performed the same permutation
analysis and found that vertical force stabilization relied less on
interjoint coordination at high hopping frequencies and more on
the selection of appropriate ankle joint torques. Collectively, these
studies suggest individual joint variation may be more important
for difficult task conditions (Yen and Chang 2010) or during the
acquisition of novel motor skills (Ko et al. 2001).

In conclusion, we have shown that multijoint error compen-
sation is a key factor in unstable object control tasks and that
the preferential control of destabilizing joint angle variance
engenders incremental changes in performance. Our data have
implications in understanding the coordination processes un-
derlying multijoint object control tasks, and we expect this
approach will be a fundamental step in linking the higher order
structural properties of motor variance to the estimation and
control processes acquired during motor learning.
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